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Epigenetics

« Coined by Waddington in 1942 to explain
differentiation of cells from one state to another

 Epigenetics: heritable changes in gene
expression without changes in DNA sequences.



Epigenetic regulation of gene expression
during development
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Position effect variegation in Drosophila
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Telomere position effect (TPE): a form of
epigenetic silencing

TPE of ADE2 expression in S.cerevisiae
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Colors of flowers, animal furs.....

Night Sky'

Morita and Hoshino, Breeding Science, 2018



One genome and many epigenomes
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Chromatin encodes epigenetic information

e Chromatin is a complex of
DNA and proteins

 (Genetic information refers to
DNA sequences

« Epigenetic information is
“stored” in and regulated by
chromatin structures




Euchromatin and heterochromatin
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Euchromatin / \ Heterochromatin

* Regions “rich” in genes - Regions “poor” in genes

 Regions active in transcription - Regions that silence

transcription
 Hyperacetylated histones

 Hypoacetylated histones
* Replicate early in S phase of ypP y

the cell cycle

Replicate late S phase

At molecular levels, chromatin domains can be classified based on modifications
on histones as well as chromatin binding proteins



DNA is packaged into chromatin in eukaryotes
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“Tetranucleosome” is the structural unit of
chromatin fiber
Tetranucleosome

Left-handed
twist of
tetrnucleosomal

unit



Epigenetic Marks

 DNA methylation, hydroxylmethylation
 Histone modifications

 Non-coding RNAs?



Post-transcriptional modifications of core

histones
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Adopted from Zhang and Reinberg, Genes & Dev (2001)

Not all histone modifications are epigenetically inherited.



Post-transcriptional modifications of core
histones
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Acetylation of Lysine residue is reversible

H H i H
\ / O CH;C \ /
NH* CH,C =CoA N
cmy =B oy,
C HDAC
N <
NH2 COO- NHZ/ \COO'
Lys

HAT: histone acetyltransferase, more accurately; lysine
acetyltransferase
HDAC: histone deacetylases



Lysine methylation is reversible
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HMT: histone methyltransferase contains SET domain
HDM: JmjC domains



What are the function of histone modifications?

cis-effects

trans-effects

histone variant

nucleosome
remodeling

regular histone
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Three classes of proteins working on histone
modifications
« Writers: enzymes that add a mark

« Readers: proteins that bind to and “interpret” the
mark

» Erasers: enzymes that remove a mark

Writing Erasing Reading
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Acetylases, Deacetylases, Bromodomain,
methylases, demethylases, = chromodomain,
phosphorylases phosphatases PHD finger,

WDA40 repeat

Tarakhovsky, A., Nature Immunology, 2010.



Examples of enzymes (writers) modifying the H3
tails

Histone H3 Histone H4

Set1

Suv39h1/h2

Most histone modifying enzyme
have non-histone substrates



Writers

Erasers
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Proteins that read modifications on H3 and H4

tails
TRANSCRIPTION REGULATION DNA REPAIR
Silent Transcriptional
heterochromatin elongation

Signaling G2/M

Transcriptional Transcriptional arrest to allow
activation memary DNA repair

: K4
Histone H3 K9 Histone H4



Proteins that read modifications on H3 and H4 tails
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Musselman et al, Nature structural and Molecular Biology, 2012



Enormous complexity and intricacy could be
generated to regulate human epigenomes



Histone modifications impact processes linking to
DNA transactions
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Active and inactive histone marks based on
association with gene activity

1) Active marks: histone marks associated with
active gene transcription (H3K4me1, H3K4me2,
H3K4me3, H3K36me3, H3K9%ac, H3K27ac,
H4K16ac)

2) Inactive/silent marks (H3K9me2 or H3K9me3,
H3K27me3)

3) Bivalent chromatin domains (H3K4me3 and
H3K27me3) at developmentally regulated genes



Histone modifications during DNA damage
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Epigenetic inheritance



How arb d8iSune eRlIcqignmalse g Javwmind @stic cell
divisions

Euchromatin Chromatin with histone variants Heterochromatin
DNA
Mother cell
Active mark Histone variants Silent mark

(H3K4me3, H3K27ac, or..) (CenH3, MacroH2A,or..) (H3K27me3, H3K9me3, or..

¢ DNA replication and Cell division

?

Histone and histone variants are assembled at the same places

Histone modification patterns at different chromatin domains are
transmitted into daughter cells

Readers for histone marks are recruited to the same places

(Many others...)



DNA replication-coupled nucleosome assembly
and the read and write mechanism for the
restoration of histone marks
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How are nucleosomes formed using newly synthesized H3-H4?

How are nucleosomes formed using parental H3-H4?

Du et al, Sci China Life Sci, 2022
Escobar al, Nature Review Genetics, 2021



Many factors regulate the deposition of new H3-
H4

Parental histone
deposition

Leading
2, strand
Parental
chromati '
New histone
\ieposition
Lagging

strand

Parental .
‘ H3—H4 dimer ﬂ H2A-H2B dimer

Newly synthesized
H3-H4 dimer

' |@) Nucleosome

Serra-Cardona and Zhang, TIBS, 2018



Parental H3-H4 tetramers are transferred to
replicating DNA strands via distinct mechanisms

Dpb3/4=POLE3/POLE4 in mammals
. —-m T T T T « Parental H3-H4 are transferred almost equally to
- Dpb3/4 leading and lagging strand of the DNA replication
’ fork.
/
/ \Q° * Dpb3-Dpb4, two subunits of leading strand DNA
polymerase, facilitates the transfer of parental
H3-H4 tetramers to leading strand.

The Mcm2-Ctf4-Pola facilitates the transfer of
parental H3-H4 to lagging strand.

These pathways are conserved from yeast to
mammalian cells.

Yu et al, Science 2018
Gan et al, Molecular Cell, 2018
Petryk et al (Groth), Science, 2018



A simplified history of nucleosome assembly

New H3-Hi1 deposition ParentaIIH3-H4 transfer
1986 2014 2018 > year
CAF-1 eSPAN Mcm2-Ctf4-Pol1

Dpb3-Dpb4 (POLE3-POLE4)



eSPAN can measure the relative amount of proteins at
leading or lagging strands of DNA replication forks
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H3K4me3 eSPAN in mecm2-3A and dpb3A mutant cells exhibit
a strong leading and lagging strand bias, respectively
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Yu et al, Science 2018, PMCID: PMC6597248
Gan et al, Molecular Cell, 2018, PMCID: PMC6193272
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Multiple replisome components likely work in
relay fashion to transfer parental histones to
replicating DNA strands

Deposition of H2A-

/\ /; H2B dimers
/18R C}\ O)_ Functional impact

4 D
Leading strand | Heterochromatin inheritance

Silencing of retroelements
) Stem cell differentiation
Replisome . DNA damage repair

Tumor progression
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a2, e o \_ )
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movement \_,v & <~
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Nucleosome with Nucleosome with (H3-H4)2 o H2A-H2B (H3-H4)2-H2A- FACT
parental H3-H4 nascent H3-H4 tetramer dimer H2B hexamer complex
Petryk et al, Science, 2018 Yu et al, Science, 2018
Dolce et al, Genes Dev, 2022 Gan et al, Molecular Cell, 2018
Wang et al, NAR 2023 ) Li et al, Science Advances, 2019
Wen et al, Nature genetics, 2023 Serra-Cardona et al, Science Advances, 2022
Weger et al, Nature Genetics, 2023 Xu et al, eLife 2022
Yu et al, Cell, 2024 Xu et al, Nature Communications, 2022
Toda et al, Mol Cell, 2024 Li et al, Nature 2023
Li et al, Nature, 2024 Fang et al, Genes Dev, 2024
Charlton et al, Cell, 2024 Serra-Cardona et al, Science Advances, 2024

Tian et al, PNAS, 2024
Shi et al, Science Advances, 2024
Karri et al. NAR. 2024



Replisome components are responsible for
faithful duplication of both genetic and
epigenetic information



e

The nucleosome core particle remembers its position
through DNA replication and RNA transcription

Gavin Schlissel® and Jasper Rine®!

“Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720

Contributed by Jasper Rine, August 9, 2019 (sent for review July 12, 2019; reviewed by Steven Henikoff and Fred M. Winston)

Active and Repressed Chromatin Domains
Exhibit Distinct Nucleosome Segregation
during DNA Replication

Thelma M. Escobar,’? Ozgur Oksuz,"** Ricardo Saldaia-Meyer,'? Nicolas Descostes,’?* Roberto Bonasio,'**
and Danny Reinberg'-#6*
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Epigenetics and Cancer

« Cancer is a disease caused by both genetic and
epigenetic changes



Chromatin regulators are altered in a variety of
tumors

Category Category Gene
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Article

Transient loss of Polycomb components
induces an epigenetic cancer fate

https://doi.org/10.1038/s41586-024-07328-w V. Parreno'?, V. Loubiere'??, B. Schuettengruber’, L. Fritsch’, C. C. Rawal®, M. Erokhin?,
B. Gyérffy®?, D. Normanno', M. Di Stefano', J. Moreaux"’?, N. L. Butova®, I. Chiolo?®,
D. Chetverina?, A.-M. Martinez'™ & G. Cavalli'™

Received: 20 January 2023

Accepted: 15 March 2024

Published online: 24 April 2024 Although cancer initiation and progression are generally associated with the

Open access accumulation of somatic mutations*?, substantial epigenomic alterations underlie
% Check for updates many aspects of tumorigenesis and cancer susceptibility’ ¢, suggesting that genetic
mechanisms might not be the only drivers of malignant transformation’. However,
whether purely non-genetic mechanisms are sufficient to initiate tumorigenesis




Histone modifications and cancer

Many chromatin regulators are frequently mutated
in cancer cells

Mutations at gene regulatory elements (enhancers,
promoters) are detected in a variety of cancers

A global change in histone modifications has been
detected in cancer cells

Expression of histone modifying enzymes is altered
in cancer cells



How to probe chromatin and histone
modifications?



Analysis of nucleosome positioning by Mnas-seq
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Gene regulatory elements such as promoters and
enhancers are at “nucleosome free”
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Analysis of nucleosome free region/open
chromatin by ATAC-seq
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Analysis of histone modification by Western
blot and ChiP-seq



Chondroblastoma

arises from the epiphysis of the long bones

Characterized by high cellularity and
undifferentiated tissues

over 90% cases contain H3.3K36M mutation

The molecular mechanism of tumorigenesis is
unknown



H3K36me2/me3 levels are low in chondroblastoma
samples compared to normal tissue samples
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Map histone modifications to a DNA
specific sequence by ChIP-seq

ChIP-5eq Experiment Overview

Cresslink and
fractionate
chromatin

ChiP:
enriched DMA
binding site

Sequence

Binding site
mapping

Pretein-chromatin interactions are first crosslinked in situ,
Spacific DNA fragments are co-immunopracipitatad and
sequenced to identify genome-wide sites associated with
a facter or madification of Interest.



Effect of H3.3K36M mutation on H3K36me2 and
H3K36me3 on chromatin in cell lines
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Cleavage Under Targets and Tagmentation
(CUT&tag): a new method for epigenomic profiling

Advantages compared to ChIP-seq

« Fast and efficient

 Low background and therefore less
sequence reads

« A dramatic reduction of sequencing
cost

 Low cell number

Potential issues:
« complication of ATAC-seq signals

Kaya-Okur et al Nature Communications 2019
Carter et al Nature Communications 2019




Cleavage Under Targets and Tagmentation
(CUT&tag) (ACT-seq): a new way for epigenomic
profiling
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Cleavage Under Targets and Release Using
Nuclease (CUT&RUN): a method for epigenomic
profiling

1° Antibody

Advantages compared to CUT&tag

| MN;EP’“‘“"A * No potential ATAC-seq signals

IINT) ®)I) D) - Detect transcription factors
+Ca®

Disadvantages compared to CUT&tag

@@@_'  Need a library preparation kits
P '@@@@@ « Maybe better more cells
rotease treatment,
L andDNA purification

DNA
Fragments

Figure 1. CUT&RUN schematic (see text for details).



Fiber-seq: analysis of chromatin accessibility at
single molecule levels
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Stergachi et al, Science 2020



Take home messages

Epigenetic phenomenon occurs in our daily life.

Mechanisms of epigenetic regulations are complex
and evolving.

Basic principles of epigenetic regulations have been
defined.

Tools to probe histone modifications and chromatin
structures are evolving at single cell and single
molecule levels.
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