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What we will discuss:

* Discovery of mRNA modification

* Technologies to detect mMRNA modifications

* Regulation of mMRNA modifications in cancer (example of AML)
* Application of modification in future therapeutics
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How do we detect which RNAs are transcribed?

| RNA Sequencing
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How do we detect which RNAs are translated?

Polysome profiling Ribosome profiling
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Arava Y., et al: Genome-wide analysis of mRNA translation profiles in . Proc. Natl. Acad. Sci. U. S. A. 2003
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How do we detect which RNASs are transcribed and
translated?

Cell type
of interest

:

In vivo capture of translating ribosomes and mRNAs, lysis
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Are transcriptome and translatome correlated?
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Why the transcriptome does not correlate
with the translatome?



Why the transcriptome does not correlate
with the translatome?
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Why the transcriptome does not correlate
with the translatome?

MRNA modifications



RNA modifications on mRNAs
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Regulatory elements: RNA modifications on mRNAs
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RNA modifications on mRNAs: m°A

When it was discovered...

Proc. Nat. Acad. Sci. USA
Vol. 71, No. 10, pp. 3971-3975, October 1974

Identification of Methylated Nucleosides in Messenger RNA from Novikoff
Hepatoma Cells

(RNA methylation/RNA processing/methylnucleoside composition)
RONALD DESROSIERS, KAREN FRIDERICI, AND FRITZ ROTTMAN*
The Department of Biochemistry, Michigan State University, East Lansing, Mich. 48824

Communicated by Anton Lang, July 8, 197}
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ABSTRACT  The poly(A) tract found in eukaryotic
mERNA was used to study methylation in mRNA obtained
from Novikoff hepatoma cells. Methyl labeling of RNA was
achieved with L-[methyl-"Hlmethionine under conditions
that suppress radioactive incorporation into the purine
ring. RNA that contains a poly(A) segment was obtained
from polysomal RNA by chromatography on oligo(dT)-
cellulose. Sucrose density gradient centrifugation ol this
RNA revealed a pattern expected for mRNA. The com posi-
tion of the methyl-labeled nucleosides in the RNA was
analyzed after complete enzymatic degradation to nucleo-
sides. By use of DEAE-cellulose (borate) chromatography,
which separates 2’-0)-methylnucleosides from normal and
base-methylated nucleosides, about 507, of the radioac-
tivity was recovered in the 2’-0)-methylnucleoside frac-
tion and 507, in the base-methylnucleoside fraction.
High-speed liquid chromatography (Aminex A-5) of the
2’-()-methylnucleoside fraction produced four peaks
coincident with the four 2’-0-methylnueleoside standards.
Analysis of the base-methylnucleoside fraction revealed a
unique pattern. While ribosomal KNA and tRNA possessed
complex base=-methylnucleoside patterns, the distribution
in mRNA was quite simple, consisting predominantly of
Ni-methyladenosine. These results demonstrate a unique
distribution of methylated nucleosides in mRNA. By
analogy to ribosomal RNA synthesis, the presence of
methylnucleosides in mRNA may reflect a cellular mecha-
nism for the selective processing of certain mRNA se-
quences.




RNA modifications on mRNAs: m°A

When it was discovered...
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Fic. 3. Highspeed liquid chromatography of base-methyl-
nucleoside fraction. Two hundred fifty microliters of each base-
methylnucleoside fraction, dissolved in H,0, were injected onto a
high-speed liquid chromatography column. The column was de-
veloped at 2500 Ibs. /inch?® at 31.5°. The flow rate was 0.8 ml,/min,
and 0.67-ml fractions were collected. At fraction 35, the volume
collected per fraction was changed to 1.35 ml. The letters cor-
respond to the location of the following standards: A, 3-methyl-
uridine, thymine riboside, and uridine; B, 1-methylinosine; C, 1-
methylguanosine; D, N*-dimethylguanosine; E, N%methyl-
guanosine; F, guanosine; GG, adenosine and N'methylcytidine;
H, Nmethyladenosine; I, 5methyleytidine; J, N®-dimethyl-
adencsine; K, 1-methyladencsine; L, 7-methylguanosine. (a) 285
+ 188 RNA; (b) 48 RNA; (c) mRNA.

ABSTRACT  The poly(A) tract found in eukaryotic
mERNA was used to study methylation in mRNA obtained
from Novikoff hepatoma cells. Methyl labeling of RNA was
achieved with L-[methyl-"Hlmethionine under conditions
that suppress radioactive incorporation into the purine
ring. RNA that contains a poly(A) segment was obtained
from polysomal RNA by chromatography on oligo(dT)-
cellulose. Sucrose density gradient centrifugation ol this
RNA revealed a pattern expected for mRNA. The composi-
tion of the methyl-labeled nucleosides in the RNA was
analyzed after complete enzymatic degradation to nucleo-
sides. By use of DEAE-cellulose (borate) chromatography,
which separates 2’-0)-methylnucleosides from normal and
base-methylated nucleosides, about 507, of the radioac-
tivity was recovered in the 2’-0)-methylnucleoside frac-
tion and 507, in the base-methylnucleoside fraction.
High-speed liquid chromatography (Aminex A-5) of the
2’-()-methylnucleoside fraction produced four peaks
coincident with the four 2°-0-methylnuecleoside standards.
Analysis of the base-methylnucleoside fraction revealed a
unique pattern. While ribosomal KNA and tRNA possessed
complex base=-methylnucleoside patterns, the distribution
in mRNA was quite simple, consisting predominantly of
Ni-methyladenosine. These results demonstrate a unique
distribution of methylated nucleosides in mRNA. By
analogy to ribosomal RNA synthesis, the presence of
methylnucleosides in mRNA may reflect a cellular mecha-
nism for the selective processing of certain mRNA se-
quences.
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RNA modifications on mRNAs: m°A

When it was mapped using méA-seq
(antibody-based method)
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RNA modifications on mRNAs: m°A
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RNA modifications on mRNAs: m°A
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RNA modifications on mRNAs: m°A
Now mapped using GLORI (chemical-based method)

Fragmented RNA
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RNA modifications on mRNAs: m®A
Now mapped using Nanopore (Direct RNA seq)

Pro:

Direct RNA seq

Long reads
Sequence anywhere
Fully scalable
Real-time sequencing

Cons:

Generation of less data
Less accuracy

Specific analysis pipeline




RNA modifications on mRNAs: m°A

m°CA is a mark of mRNA degradation
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The m°A mRNA life cycle

What controls mSA?

YTHDF1
RNA solici mRNA export YTHDF2
TR (ﬂ YTHDF3
other RBPs? mRNA degradation
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MRNA localization

Adapted from Zaccara et al., Nat Rev Mol Cell Biol 2019
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m°®A regulators are deregulated in cancer

Major findings: . = =
* m°CAregulators are rarely mutated in cancer =
THOR 17375, 5(}
« Common is the de-regulation of m°A | ) R e
regulators (upregulation/downregulation) o



m°®A regulators are deregulated in cancer

Major findings:

MG6A regulators are rarely mutated in cancer

Common is the de-regulation of m°A
regulators (upregulation/downregulation

Impact on specific m®A mRNAs

Glioma
METTL3  METTLI4 YTHDF2 IGF2BP2 IGF2BP3
ADAMIS  ASS1 UBXN1  [IGF2 IGF2
sox2 LXRA Let7 ZNRF3
SRSF ALKBHS | MYC HMGA1
ADAR1  FOXMI = HIVEP2  PBK
MALATI  NEATI  VEGFA
UBXN1
Lung cancer
METTL3 FTO YTHDF1 YTHDF2  IGF2BP1 IGF2BP3
EGFR  MZF1 YAP AXINT LIN28B  PKM
TAZ USP7 CCNB1  DAPK2 CTNNBI  HMGA2
YAP MYC BTG2 KRAS MYC
miR-143 ENO1  TSUC7 FOXM1
ZBTB4 TGFBR2 IGF2BP2  TWISTI
FBW7 SMAD3 = YTHDC1 MALAT1
LACT3 CirclGF2BP3  TGFBP1
REM4-S
Liver cancer
METTL3  YTHDF1  IGF2BP1 IGF2BP2  IGF2BP3
socs2 EGFR MYC MYC MYC
CTNNB1 ATG2A SRF IGF2 LIN28B
YAP1 ATG14 MK167 FEN1 TRAFS
LINCO0958  PIK3R1 KRAS WWWP2  PDK4
LYPD1 E2Fs linc-CTHCC
METTLI6  YTHDF2 g
RABIIB-AST g&;ﬂ SLCTAN
circMDK
‘L',g:" itn GircMAP3K4
SERPINE2
ETS1
Pancreatic cancer
METTL3 METTLI4 WTAP FTO  IGF2BP1 IGF2BP2
miR25  PERP FAK  MYC  ELF3 GLUTI MYC
PDGFC MYC DANCR KLF12
PLK1
Acute d k
METTL3 METTL14 FTO ALKBH5 YTHDF2  IGF2BP2
MYC  MYC ASB2  [TACC3 | TNFRSF2 MYC
BCL2  MYB RARA  AXL GPT2
PTEN MYC EIFAEBP1 YTHDC1  SLCIAS
SP1 WTAP  cggpA  MLST8 ~ MCM4
sP2 WWITRT  LiLRB4 MALATI  IGF2BP3
BRD4 LDHB RCC2
cox2
METTL3 METTL14 ALKBHS YTHDF1  IGF2BP1 IGF2BP2
HK2 MYC SOX2  CDC25B  MYC MYC
SNAIL RANBP2  E2F FOXM1
PDK4a  WTAP  FTO EIF3C PEGIO
CTNNB1 miR-200 HOXB13 UBAG IGF2BP3
AXL YTHDF2 PDK4
miR126 e RAB28
FENDRR

Fig. 2| Oncogenic roles of m*A modifiers. Tumour-promoting roles of
N-methyladenosine (m¢A) modifiers, Including m°A writers (METTL3,
METTL14, METTL16 and WTAP), m“A erasers (FTO and alkB homologue 5
(ALKBHS5)) and m®A readers (Insulln-like growth factor 2 mRNA-binding
proteins 1-3 (IGF2BP1-3), YTH domalin-containing family proteins 1-3

o] h: cancer
METTL3 METTL14 FTO YTHDC1
NOTCH1 GLS1 miR-99a-5p HSD17B11 MALAT1
EGR1 APC LINOOO22
Melanoma
METTL3 FTO YTHDF1 YTHDF2 YTHDF3 IGF2BP1
EGFR PDCD1 HINT2 PER1 CTNNB1  SQSTM1
CXCR4 TP53 E2F
SOX10
Breast cancer
METTL3  METTLI4  YTHDF1 IGF2BP1  IGF2BP3
HBXIP CXCR4 FOXM1 MYC SNAIL2
KRT7-AS CYP1B1 E2F8 MIR210HG PD-L1
CircMETTL3 PKM2 CERS6
PD-L1 WTAP BCRP
EGF ENO1 10r2882
YTHDF3 DROSHA
FTO STEGALNAC5 HSPD1
BNIP3 GJA1 RBM8A
miR-181b-3p EGFR G38P1
Gastric cancer
METTL16 FTO IGF2BP2 IGF2BP3
BATF2 CCND1 CAV1 ZEB1 CD44
SPHK2 IGFIR HDGF
THAP7-AS1 WTAP YTHDF1 SIRT1 MYC
PARP1 HK2 FZD SNAIL
usP14
Colorectal cancer
METTL3  YTHDF1 IGF2BP1  IGF2BP2 IGF2BP3
HK2 PD-L1 KRAS SOX2 CCND1
GLUT VISTA LDHA CiIrcNSUN2  VEGF
STAT1 ARHGEF2 HK2 ABCB1
IRF1 GLUT1
YPELS YTHDF2 YAP
circl662  GSK3B ZFAS
BHLHE41 HMGA1
CRB3 YTHDF3
GAS5
Bladder cancer
METTL3 WTAP FTO YTHDF1 IGF2BP1
AFF4 cbcPt TNFAIP3 MALAT1 ITGA6 MYC
IKBKB KLF4 FSCN1
RELA ITGAB PD-L1
MYC PD-L1
TEK miR-221/222
VEGFR
Prostate cancer
METTL3 METTL14 YTHDF2 IGF2BP2 IGF2BP3
USP4 THBS1 LHPP IGFIR HDAC4
PCATE NKX3-1 MYc

(YTHDF1-3) and YTH domain-containing protein 1 (YTHDC1)), and their
respective downstream targets, Including coding and non-coding RNAs,
are listed for the relevant cancer types. Targets posltively regulated
(upregulated) by m*A modifiers are Inred, while negatively regulated

(downregulated) targets are In blue.




Effect of m®A on Acute Myeloid Leukemia:
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m°®A and AML
m°OA regulators are upregulated in AML
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M°®A controls the differentiation of AML cells

The role of METTL3 in AML
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Vu et al., Nature Medicine 2017
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M°®A controls the differentiation of AML cells
The role of METTL3 in AML
Upon METTL3 depletion, mSA mRNAs are more stable
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M°®A controls the differentiation of AML cells
The role of METTL3 in AML

This inhibitor is now in clinical trial for AML patients

Fig. 4: STM2457 prevents AML expansion and reduces the number of key leukaemia

stem cells in vivo.
PDX-1
a Vehicle (NPM1c) STM2457 b PDX-1
' Treatment (NPM1c)
100 b—— —\ehicle
—STM2457
S
S 50
e
-
)]
0 P = 0.0025
0 50 100 150

Time after transplantation (d)



m°®A regulators are deregulated in cancer

 mO®Ais a marker of instability
* |tis controlled by m®A regulators

* Changes in these regulators have been associated with cancer



m°®A regulators are deregulated in cancer

Mutations of modulators or
modulation of transcription
factors

Changes in metabolites

Changes in PTMs or
localization of m®A regulators
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The future of the RNA modification field is to understand how they are controlled



RNA modifications on mRNAs: m°A

Gene architecture defines where m°®A gets added

Methylated / \
transcriptsI -~
m'G

W -
internal exons Stop codons

= Exon junction

Major findings:
 mCAis hard-coded

* Long exons are methylated,
shorter exons (<100nt) are not methylated ¥ mA

) ) Unmethylated o Supprgssed
because the EJC (exon junction complex) does tramcripts/'T\S m°A sites

. we Ch @ EJC & RNPST
not leave space for METTLS3 to bind W
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The future of the RNA modification field is to understand how they are controlled
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Why do we need RNA modifications?

* Change mRNA degradation rate

* Change mRNA localization

* Control cellular differentiation and multiple other cellular events
* Differentiate self vs non-self RNA



HE NNOYREL |
'HE NOBEL PRIZE
| DLIVTSIOI O\CN NP A :"\ = D I ! N E 2
: ; :;‘ g (W::}g ﬁ ’C_. —'(—'j | - ‘\'&J %"a,j é (-);,.g,'/ ;5'{\‘ if % t

=\
=7 \)\‘\.
(=7

&/

A | (

PayaW|3 SepiiN :suoielysnij|

Katalin Kariko Drew Weissman

“for their discoveries concerning nucleoside base
modifications that enabled the development
of effective mRNA vaccines against COVID-19"

THE NOBEL ASSEMBLY AT KAROLINSKA INSTITUTET



Regulatory elements: RNA modifications on mRNAs

= TIME < THE 100 MOST INFLUENTIAL PEOPLE OF 2023

Ozlem Tureci and Ugur Sahin
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Immunity, Vol. 23, 165-175, August, 2005, Copyright ©2005 by Elsevier Inc. DOI 10.1016/j.immuni.2005.06.008

Suppression of RNA Recognition by Toll-like
Receptors: The Impact of Nucleoside Modification —
and the Evolutionary Origin of RNA -
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Immunity, Vol. 23, 165-175, August, 2005, Copyright ©2005 by Elsevier Inc. DOI 10.1016/j.immuni.2005.06.008
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Receptors: The Impact of Nucleoside Modification
and the Evolutionary Origin of RNA
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W-modified mRNA is also more translated
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Kariko’ et al, Molecular Therapy (2008)
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What we discussed:

* Discovery of mMRNA modification

* Technologies to detect mMRNA modifications:

--antibody, chemical, direct RNA seq methods

--they revealed what we currently know about m°A

--for some modifications, we do not have good sequencing technologies

* Regulation of mMRNA modifications in cancer

B m°A regulators are upregulated/downregulated in cancer

M specific mMRNAs are regulated, but we do not know how they are regulated
B the major effect of m6A is on mMRNA stability. However, it can impact splicing, localization, etc...
* Application of modifications in future therapeutics

--modifications can allow to distinguish self from non-self RNA

--their use in vaccine



mPA in cancer:
* https://www.nature.com/articles/s41571-023-00774-x

METTL3 inhibitor:
https://www.nature.com/articles/s41594-021-00606-5

mPA regulation:
https://www.sciencedirect.com/science/article/pii/S1097276522004968?via%3Dihub

Beyond mPA:
* https://pubmed.ncbi.nlm.nih.gov/33188361/
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