

Chapter 07

TUMOR SUPPRESSOR GENES

Chapter 08

RB AND CONTROL OF THE CELL CYCLE CLOCK

Hee Won Yang (hy2602@cumc.columbia.edu)

Organization of Lecture

- Proto-oncogenes vs. Tumor suppressor genes
- n The retinoblastoma protein
- n The p53 gene
- n Targeting the Rb pathway in cancer

Hallmarks of cancer

Normal Cell Division

- Some are altered in a restricted set of tumor types
 - e.g., the APC (adenomatous polyposis coli) tumor suppressor in colorectal carcinoma
- Others are altered in a broad spectrum of tumor types
 - e.g., p53 tumor suppressor and the Ras proto-oncogenes
- The importance of tumor gene "pathways"
 - the Rb and p53 pathways

A proto-oncogene promotes cancer when its function is malignantly <u>activated</u>

- An activated proto-oncogene contributes to tumorigenesis by "gain-of-function"
- Thus, an activated proto-oncogene is genetically dominant at the cellular level
 - an activated oncogene can elicit a new phenotype (tumorigenesis) even in the presence of the corresponding wild type allele

Methods of Oncogene Activation in Cancer

- gedergrandfatation de adding to colore (exprets an stocalions), leading to gene dysregulation or overexpression

 • c-Myc gene translocation in Burkitt's lymphoma

Proto-oncogene mutations in Melanoma

stimated New Cases						
			Males	Females		
Prostate	288,300	29%		Breast	297,790	31%
Lung & bronchus	117,550	12%		Lung & bronchus	120,790	13%
Colon & rectum	81,860	8%		Colon & rectum	71,160	8%
Urinary bladder	62,420	6%		Uterine corpus	66,200	7%
Melanoma of the skin	58,120	6%		Melanoma of the skin	39,490	4%
Kidney & renal pelvis	52,360	5%		Non-Hodgkin lymphoma	35,670	4%
Non-Hodgkin lymphoma	44,880	4%		Thyroid	31,180	3%
Oral cavity & pharynx	39,290	4%		Pancreas	30,920	3%
Leukemia	35,670	4%		Kidney & renal pelvis	29,440	3%
Pancreas	33,130	3%		Leukemia	23,940	3%
All Sites	1,010,310	100%		All Sites	948,000	100%

Cancer statistics, 2023

BRAF V600 mutation in melanoma cells

BRAF V600 mutation in melanoma cells

RAS is one of the most frequently mutated genes in human cancers

A tumor suppressor gene promotes cancer when its function is malignantly inactivated

- A tumor suppressor contributes to tumorigenesis by "loss-of-function"
- In most instances, an inactivated tumor suppressor gene is genetically recessive at the cellular level.
 - It will <u>not</u> promote tumorigenesis in diploid cells unless the other (wildtype) allele is also lost or inactivated
 - Some exceptions:
 - dominant-negative p53 mutations
 - "haploinsufficient" tumor suppressor genes

- In this lecture we will focus on...
 - the retinoblastoma susceptibility (Rb) gene
 - the p53 tumor suppressor gene
- Genetic properties
- Biochemical functions of their protein products
- the p53 and Rb tumor suppressor "pathways"

p53 is the most frequently mutated gene in cancer

The p53 gene

The TP53 web site (http://p53.fr/)

Retinoblastoma cancer

- Retinoblastoma is a rare type of eye cancer that primarily affects young children, usually before the age of 5.
- It originates in the retina, the light-sensitive lining on the inside of the eye.

The Retinoblastoma (Rb) gene

- Cytogenetic abnormalities of chromosome 13:
 - interstitial deletions of variable length
 - always involve material from chromosome band 13q14
 - Sporadic patients: deletions in tumor cells only
 - Familial patients: deletions in both tumor & normal cells
- Is Rb susceptibility due to genetic loss at 13q14?
- ☐ If so, then the two mutations required for retinoblastoma might represent inactivation of both alleles of a single gene at 13q14

Copyright © 2023 W. W. Norton & Co., Inc.

Mechanisms for inactivation of the second Rb allele in familial patients

E2F transcription factors

- The E2F family is a group of transcription factors that play an important role in regulating the cell cycle.
- G1/S transition is mediated by the E2F family of transcription factors
- E2F binds the promoters of genes required for cell cycle progression (G1/S transition and S phase).

Expression of cell-cycle proteins

Some S phase genes regulated by E2F

S phase gene

- thymidine kinase
- DHFR (dihydrofolate reductase)
- DNA polymerase α
- ORC1
- histone H2A
- cyclin E
- cyclin A

Function

nucleotide synthesis

u u

DNA replication

((

chromosome assembly

cell cycle progression

Quiescent cells

- Hypophosphorylated Rb binds promoter-bound E2F
- Rb inactivates transcription by E2F
- S phase genes are repressed
- G1/S transition is blocked

Rb is regulated by phosphorylation

CDK4/6 phosphorylates Rb, liberating E2F

- CDK4/6-cyclin D phosphorylates Rb
- Hyperphosphorylated Rb dissociates from E2F
- E2F activates transcription of S phase genes
- Cells enter S phase

The G1/S checkpoint in cell-cycle entry

Bistability in cell-cycle entry?

Hinds et al., 1992; Lundberg et al., 1998; Harbour et al., 1999; Yao et al., 2011;

Bistability in cell-cycle entry?

Fluctuation of cyclins

Copyright @ 2023 W. W. Norton & Co., Inc.

Cyclin B protein expression

From "Control of the cell cycle: Figure 2"

Diverse signaling pathways regulate CDK4/6 activity

Diverse signaling pathways

Diverse signaling pathways regulate CDK4/6 activity

CDK inhibitor proteins

CDK inhibitor proteins

INK4 (Inhibitors of CDK4) Family:

- p15, p16, p18, p19
- These proteins are composed of multiple ankyrin repeats and bind only to CDK4/6

CDK inhibitor proteins

CIP/KIP (CDK interacting protein/Kinase inhibitory protein) Family:

- p21, p27, p57
- Members of the CIP/KIP family bind to and inhibit the active cyclin/CDK complex

Regulation of CDK4/6 by cyclin D and p21

Yang et al. 2017

Stoichiometric competition

Competing mitogen and stress signaling control cell-cycle entry

The role of CDK4/6 in cell-cycle entry

Cell-cycle entry

Hinds et al., 1992; Lundberg et al., 1998; Harbour et al., 1999; Yao et al., 2011;

Narasimha et al., 2014

Chung et al., 2019

Direct inactivation of Rb in tumors

- Rb gene deletion (occurs in retinoblastoma)
- point mutations in the Rb pocket (in retinoblastoma)
- occupancy of the Rb pocket by early proteins of DNA tumor viruses
 - human papilloma virus (HPV), the main etiological agent of human cervical carcinomas
 - HPV encodes two proteins required for tumorigenesis
 - E7 binds the pocket of hypophosphorylated Rb
 - Deregulation of E2F (and the G1/S transition)

Indirect inactivation of Rb in tumors

- overexpression of cyclin D1
 - breast cancer, B cell lymphoma
- loss of p16, an inhibitor of Cdk4
 - many human cancers
- inherited point mutation in Cdk4 that renders it insensitive to inhibition by p16
 - familial melanoma
- Inactivation of the Rb pathway occurs in many human tumors!

Rb-dependent and -independent cell-cycle entry

CDK4/6 is a promising target in breast cancer

DDESS DELEASI

Pfizer Announces PALOMA-3 Trial For IBRANCE® (Palbociclib) Stopped Early Due To Efficacy Seen In Patients With HR+, HER2-Metastatic Breast Cancer Whose Disease Has Progressed Following Endocrine Therapy

Published: Apr 15, 2015 8:00 a.m. ET

Finn et al., 2015

Live-cell sensor to monitor individual cell proliferation

Kinase Translocation Reporters (KTRs)

Kinase activity = $\frac{\text{Cytoplasm}}{\text{Nucleus}}$

Hahn et al., 2009 Regot et al., 2014 Spencer et al., 2013

Yang*, Cappell*, Jaimovich* et al., 2020

Individual cell tracking

Live cell imaging in Highthroughput manner

Cell tracking & Classification of cell behavior

Drug-tolerant persister cells

Proliferation

Quiescence

Drug-tolerant persister cells

HR+/HER2-MCF7 cells

Drug-tolerant persister cells

Alternative pathway for Rb inactivation

Kim et al. 2023; Zhang* and Kim* et al. 2023

Canonical pathway Non-canonical pathway CDK4/6i OFF ON CDK4/6 CDK4/6 cyclin D cyclin D High E2F activity Low E2F activity E2F Rb Rb Rb E2F E2F E2F E2F Rb E2F E2F Phosphorylation Degradation E2F E2F E2F site OFF (Incomplete inactivation) (Complete inactivation)

CDK4/6 inhibitor treatment results in Rb-protein reductions

Rb-protein reductions are reversible in established CDK4/6i resistance

Reduced Rb protein levels in a breast cancer mouse model

Rb-protein reduction in patient samples

Sequential regulation of E2F activation

Induction of c-Myc expression facilitates CDK4/6i-tolerant persisters

Rb and c-Myc levels in pre-treatment samples and PFS

c-Myc amplification status in pre-treatment samples and PFS

Adjusted by hormone therapy alone

Sarat Chandarlapaty (MSKCC) Pedram Razavi (MSKCC) Anton Safonov (MSKCC)

Kim et al. 2023; Zhang et al. 2023;

Continuing CDK4/6i beyond progression?

PACE and MAINTAIN clinical trials

Prolif. (91%

Quies. (9%)

The role of CDK4/6 beyond the restriction point

Article

Loss of CDK4/6 activity in S/G2 phase leads to cell cycle reversal

https://doi.org/10.1038/s41586-023-06274-3

-3 James A. Cornwell¹, Adrijana Crncec¹, Marwa M. Afifi¹, Kristina Tang¹, Ruhul Amin¹ & Steven D. Cappell¹ □

Received: 9 September 2022

Cornwell et al. 2023

The role of CDK4/6 beyond the restriction point

CELL CYCLE

CDK4/6 activity is required during G₂ arrest to prevent stress-induced endoreplication

Connor McKenney, Yovel Lendner, Adler Guerrero Zuniga, Niladri Sinha, Benjamin Veresko, Timothy J. Aikin, Sergi Regot*

McKenney et al. 2024

Consequences of WGD

Targeted therapeutic strategies for TNBC

Targeting RNA polymerase II activity

Lin et al., 2012; Nie et al., 2012; Rahl et al., 2010;

Targeting RNA polymerase II activity by CDK7 inhibitors

Dual targeting CDK4/6 and CDK7 activity (TNBC cell lines)

Dual targeting CDK4/6 and CDK7 activity (patient-derived organoids)

Upregulation of immune-related pathways

Dual targeting CDK4/6 and CDK7 activity (in vivo models)

P < 0.01, ** P < 0.001, *** P < 0.0001

^{*} P < 0.01, ** P < 0.001, *** P < 0.0001: one-way ANOVA

New Therapeutic strategy based on basic cell-cycle studies

Kim* and Son* et al., 2025

Hallmarks of cancer

Cell cycle regulation

