Single-Cell Sequencing in Cancer

Peter A. Sims, Columbia University
G4500: Cellular & Molecular Biology of Cancer
September 22, 2025

Learning Objectives

- Lecture will focus on technology for and applications of single-cell RNA-seq and DNA-seq
- Why are these two tools useful to cancer biologists and oncologists?
- How do they work and what biological questions can they answer?
- What are the key limitations of these technologies?

scDNA-seq

- Co-occurrence patterns for driver mutations / genotypic heterogeneity
- Clonal analysis / tumor cell phylogeny
- Identification of circulating, metastatic, or therapyresistant clones

scRNA-seq

- Co-occurrence patterns for gene expression / phenotypic heterogeneity
- Differentiation trajectory analysis, identification of transitioning subpopulations
- Analysis of non-genetic mechanisms of metastis and therapy resistance

Bulk DNA-seq

- Can compute allele fractions, but can only infer co-occurrence.
- Rare clone discovery limited by sequencing depth.

 WGS can be used for both CNV and SNV detection.

scDNA-seq

 Direct observation of cooccurring mutations.

 Rare clone discovery limited by cell numbers.

 Difficult to call SNVs and CNVs accurately with the same technique.

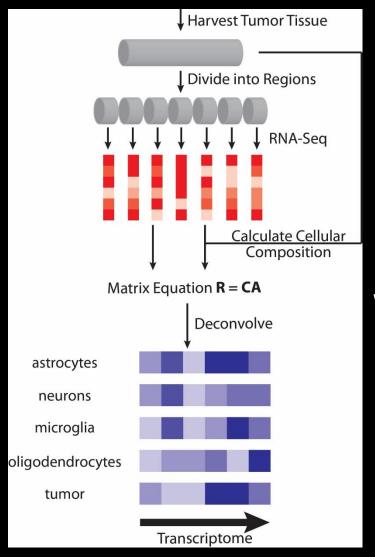
Bulk RNA-seq

- Essentially impossible to assess co-expression.
- Can make inferences about cellular composition by deconvolution.
- Works on homogenized tissue.
- Sensitivity limited mainly by sequencing depth – relatively easy to directly quantify lowly expressed genes.

scRNA-seq

- Allows direct (at best) or imputed (at worst) detection of co-expressed genes.
- Can directly measure cellular composition by unsupervised clustering.
- Requires dissociation to a single-cell suspension.
- Sensitivity limited mainly by molecular capture efficiency – must make inferences about lowly expressed genes.

Computational Deconvolution of Gene Expression



Total Expression Level of a Gene is the Sum of Contributions from Each Cell Type

$$G = C_1g_1 + C_2g_2 + C_3g_3 + \dots$$

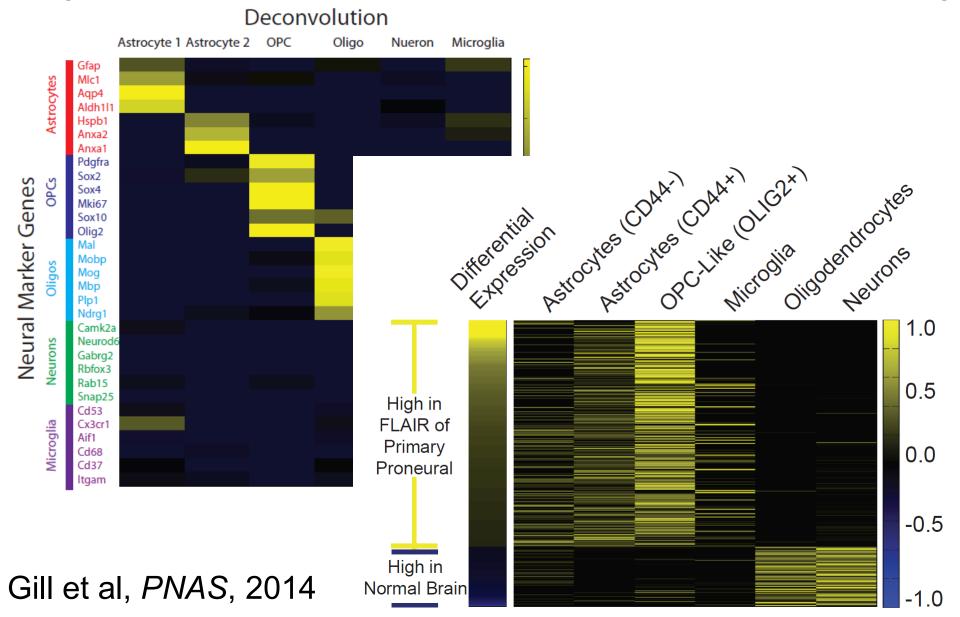
neuron astrocyte microglia

How can we solve this equation?
What if we could had this equation for many samples?

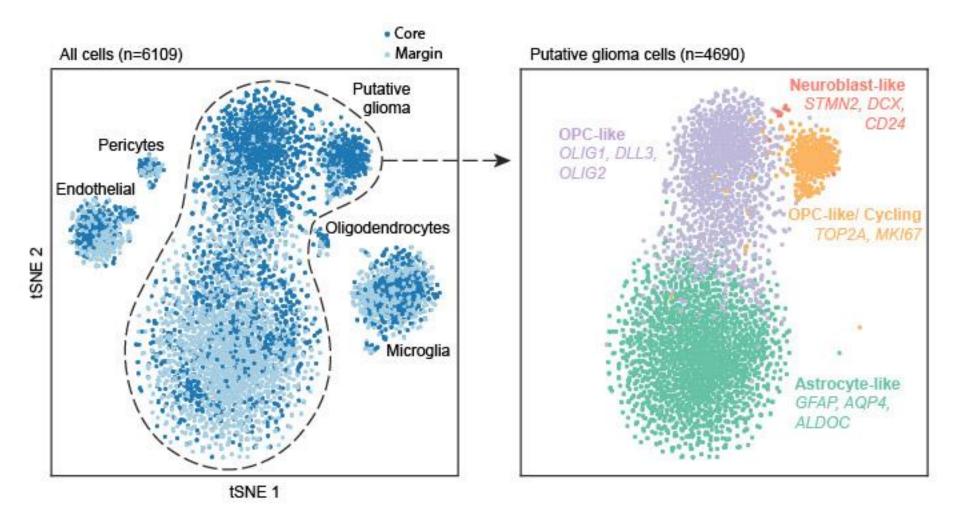
$$G_1 = C_{11}g_1 + C_{12}g_2 + C_{13}g_3 + ...$$

 $G_2 = C_{21}g_1 + C_{22}g_2 + C_{23}g_3 + ...$
 $G_3 = C_{31}g_1 + C_{32}g_2 + C_{33}g_3 + ...$
 $G_4 = C_{41}g_1 + C_{42}g_2 + C_{43}g_3 + ...$

Deconvolution of Cell Type-Specific Gene Expression in Glioblastoma with Bulk RNA-seq



Direct Observation of Cell Type-Specific Gene Expression in Glioblastoma with scRNA-seq



Levitin et al, Molecular Systems Biology, 2019

Challenges of scRNA-seq in Cancer

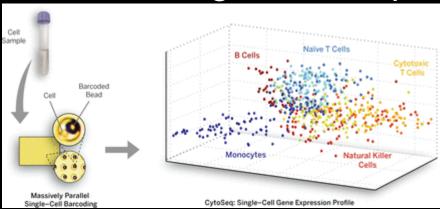
- Extreme compositional heterogeneity multiple malignant lineages, asynchronous differentiation, immune microenvironment, stromal cells. Large cell numbers are required.
- Untransformed cell-of-origin also present how to distinguish the malignant tumor cells from non-neoplastic cells in the microenvironment?
- Sample preparation solid tumors must be dissociated without inducing massive expression changes and biasing cellular composition

Exponential Scaling of scRNA-seq over 10 Years

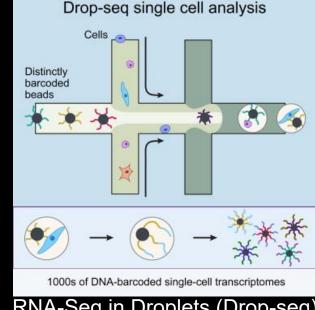


Svensson et al, Nature Protocols, 2018

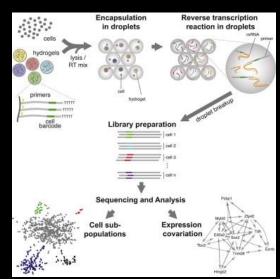
New Tools for Highly Multiplexed, Single-Cell Expression Profiling



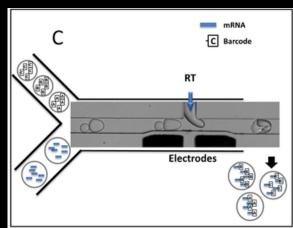
Targeted Expression Profiling in Open Microwells (CytoSeq)
Fan et al., *Science*, 2015.



RNA-Seq in Droplets (Drop-seq) Macosko et al., *Cell*, 2015.



RNA-Seq in Droplets (inDrops) Klein et al., *Cell*, 2015.

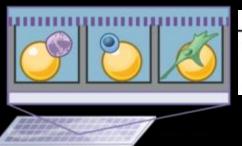


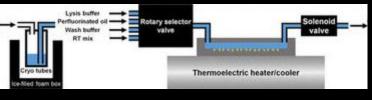
RNA-Seq in Droplets (Hi-SCL) Rotem et al., *PLoS ONE*, 2015.

RNA-Seq in Sealable Microwells Bose et al., *Genome Biology*, 2015.

Second-Generation Tools for Large-Scale scRNA-Seq

Microwells





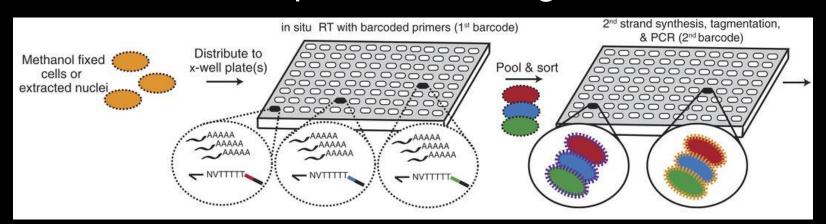
Seq-Well (Gierahn et al, *Nature Methods*, 2017)

Automated Microwells (Yuan and Sims, *Sci Rep*, 2016)

Droplets

10x Genomics Chromium (Zheng et al, *Nature Commun*, 2017)

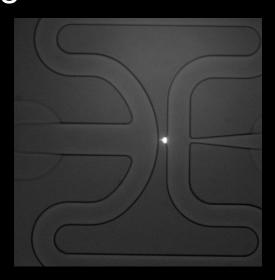
Split-Pool Sorting



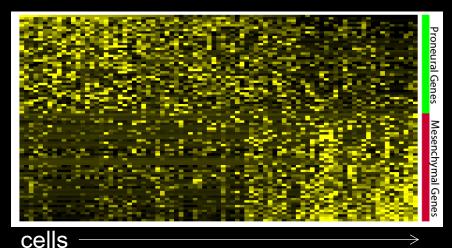
sci-RNA-Seq (Cao et al, *Science*, 2017)

Old Way: Isolate Cells-of-Interest and Find Genes that Distinguish Them

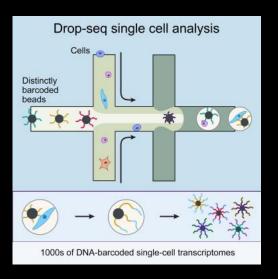
Fluidigm C1 96-cell Chip



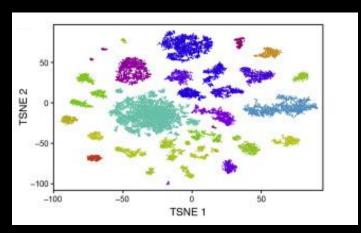
Transformed Cells from Proneural Tumor:



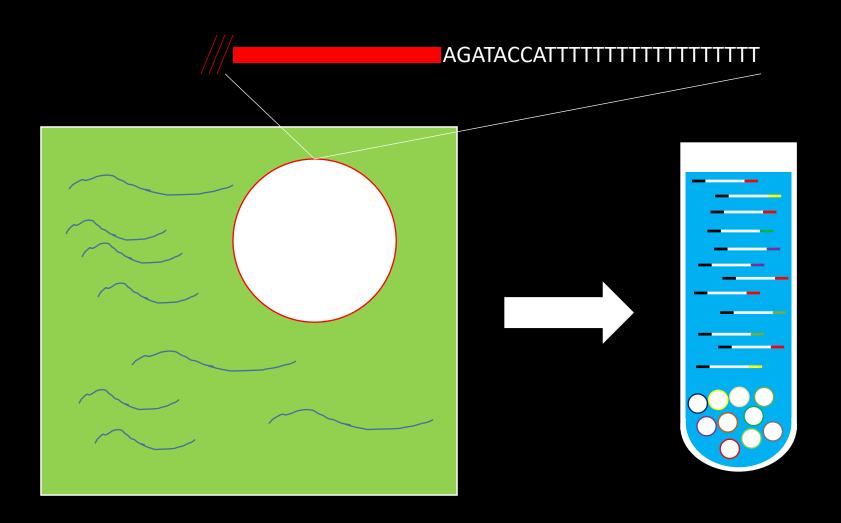
New Way: Get All of the Cells and Cluster



Cells from Dissociated Retina:



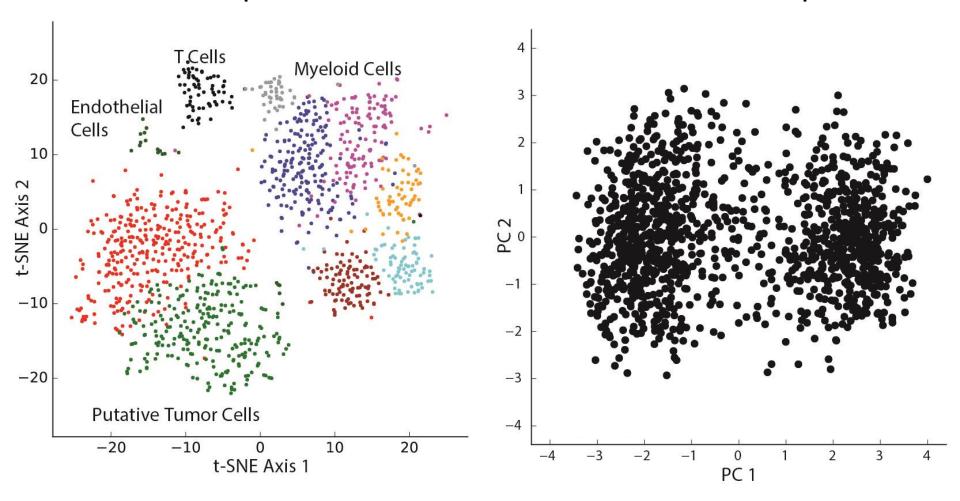
Microfluidic Pooled Barcode Approach to Single Cell RNA-Seq

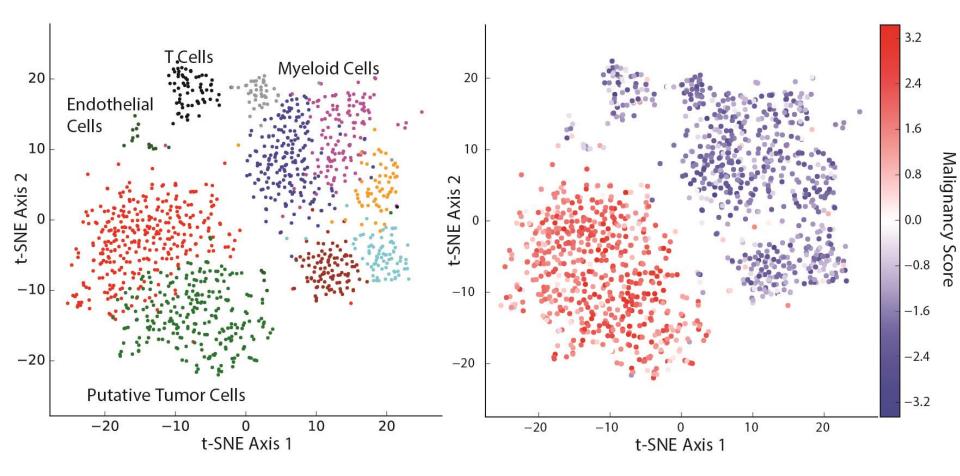


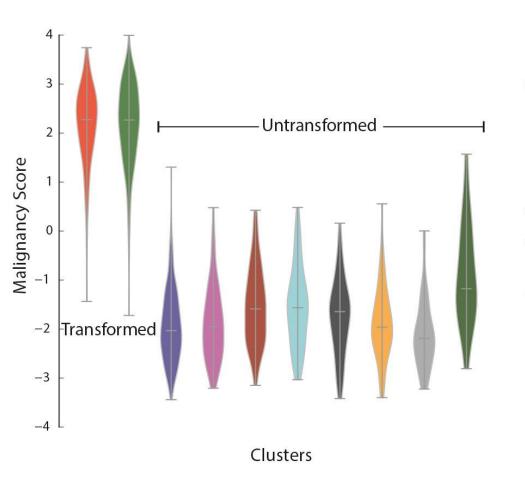
How do we identify the malignantly transformed tumor cells?

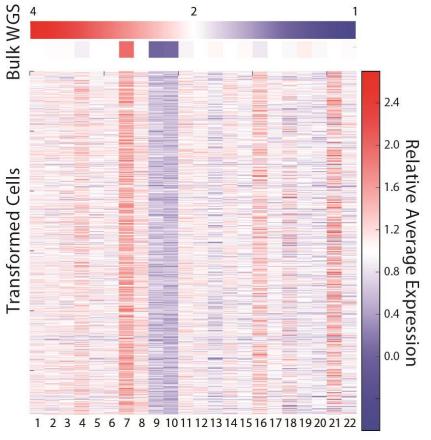
Cluster Cells based on Gene Expression

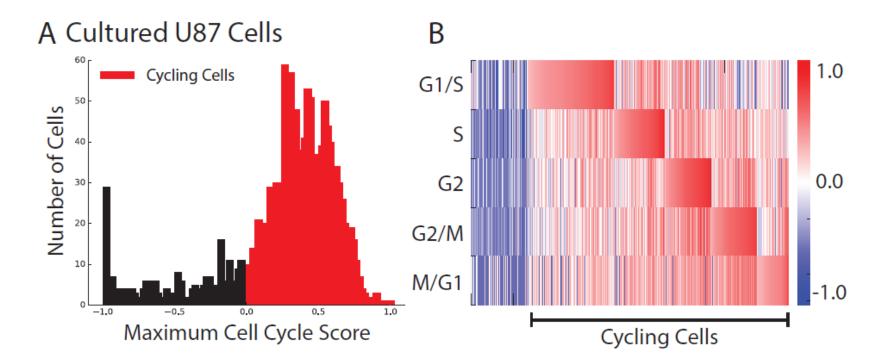
Cluster Cells based on Chromosomal Expression



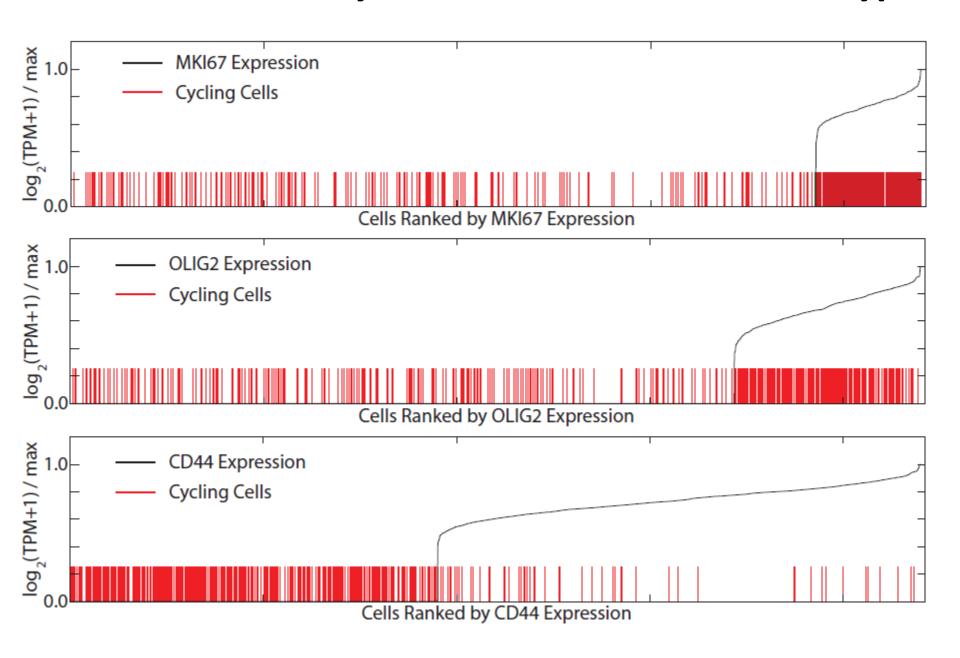








Simultaneous Analysis of "Cell State" vs. "Cell Type"



Challenges of scDNA-seq in Cancer

- Extreme compositional heterogeneity rare clones can be just as important as highly prevalent ones. In many tumors, transformed cells aren't even in the majority and there is rarely a high-fidelity marker of the transformed cells.
- Simultaneously achieving highly uniform coverage and highly accurate sequence data remains challenging.
- Advances in pooled-barcode library construction do not have the same transformative impact on scDNA-seq as on scRNA-seq. At the end of the day, the genome is still large and so sequencing costs are limiting.

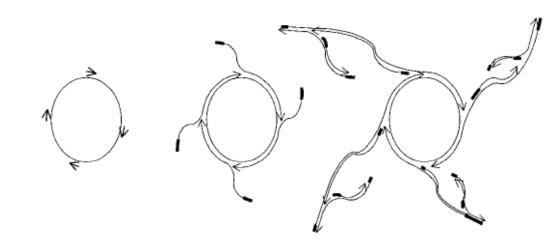
Multiple Displacement Amplification

ADVANTAGES:

- Rapid, efficient isothermal amplification from single cells with no special equipment.
- Low error rate due to intrinsic proofreading activity of polymerase – good for calling SNVs
- Relatively high coverage (breadth)

Rapid Amplification of Plasmid and Phage DNA Using Phi29 DNA Polymerase and Multiply-Primed Rolling Circle Amplification

Frank B. Dean, ^{1,3} John R. Nelson, ^{2,3} Theresa L. Giesler, ² and Roger S. Lasken ^{1,4} ¹ Molecular Staging, Inc., New Haven, Connecticut 06511, USA; ² Amersham Pharmacia Biotech, Piscataway, New Jersey 08855-1327, USA



Disadvantages:

- Relatively low coverage uniformity compared to other methods, particularly for human-sized genomes.
- Hyperbranching process results in spurious chimera formation

Multiple Annealing and Looping-Based Amplification Cycles (MALBAC)

ADVANTAGES:

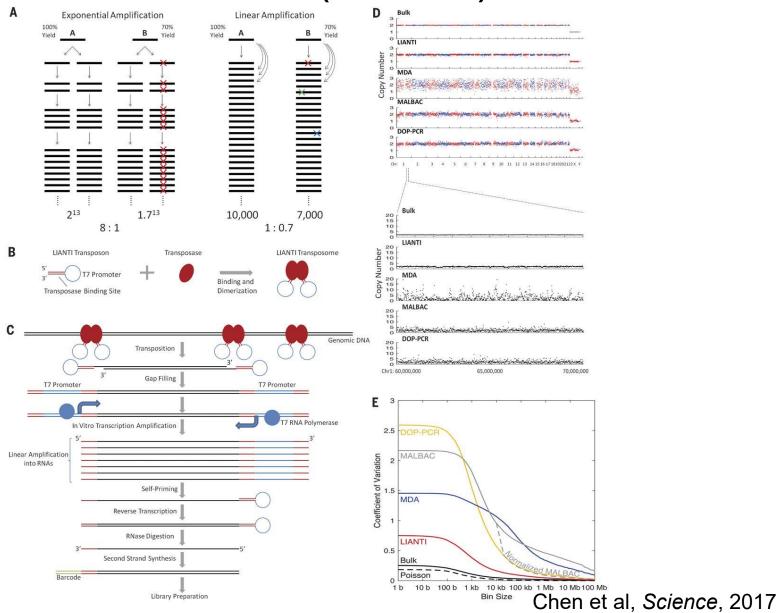
- Rapid and efficient amplification from single cells.
- Relatively high coverage (breadth), even for large genomes.
- Relatively uniform coverage (depth), even for large genomes.
- Looping step reduces chimera formation rate.

Anneal primers Bst DNA polymerase Denature 20 cycles of PCR and sequence Annea Looped full amplicons Five cycles of quasilinear amplification Lasken, Nature Biotech., 2013

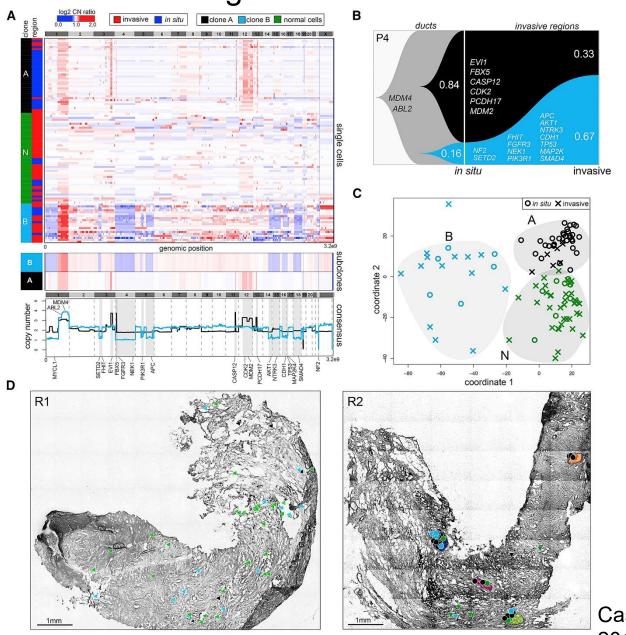
Disadvantages:

- Uses Bst DNA polymerase to run primer extension reactions at higher temperature – enzyme has no proofreading, complicating accurate SNV calling.
- More complex reaction than MDA, requires thermocycling, multiple enzyme additions.

Linear Amplification via Transposon Insertion (LIANTI)



scDNA-seq Enables Simultaneous Spatial and Phylogenetic Profiling in Breast Cancer



O in situ △ invasive

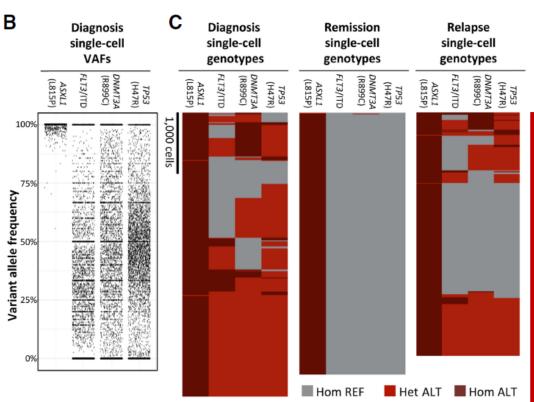
clone A clone B normal cells

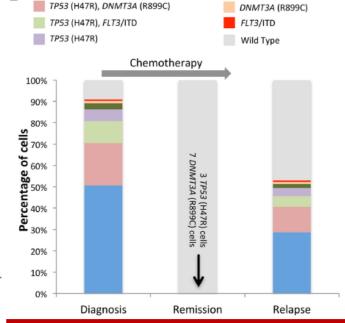
Casasent et al, *Cell*, 2018

duct1 duct2 duct3 duct4

Single-cell Genomics of AML under Therapy

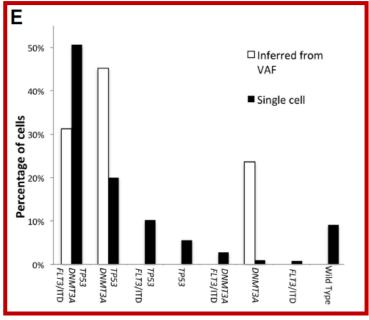
Δ				
^		Diagnosis	Remission	Relapse
	Total read pairs	17,331,034	18,824,864	16,900,170
	Reads mapping to cells	63%	85%	76%
	Total cells found	7,364	5,605	5,498
	Average reads per cell	1,578	2,974	2,188
	Number of genotyped cells	4,748	4,384	4,236
	Raji spike in detection rate	1.0%	1.3%	4.8%
	Average allele dropout rate	2.1%	10.3%	8.7%





DNMT3A (R899C), FLT3/ITD

TP53 (H47R), DNMT3A (R899C), FLT3/ITD



Pellegrino et al, Genome Research, 2018.