Cancer plasticity and cancer stem cells

Michael M. Shen, Ph.D.

Departments of Medicine, Genetics & Development, Urology, and Systems Biology

Herbert Irving Comprehensive Cancer Center

Columbia University Medical Center

Lecture objectives

- Identify key properties of stem cells and cancer stem cells
- Describe methods for assaying stemness in cancer and their limitations
- Understand the cell of origin hypothesis
- Understand lineage plasticity and its relationship to stemness

Properties of mammalian stem cells

Properties of a cancer stem cell

Self-renewal

- Cell of origin
- Differentiation into non-tumorigenic cells © Cancer stem cell

Relatively rare

Tumor-initiating cell

Basis for metastasis

Tumor-propagating cell

Origin from a stem cell or progenitor?

Hierarchical organization of tumors

Models for tumor heterogeneity

Classical cancer stem cell model

Tumor heterogeneity and evolution

Clonal evolution and tumor initiation

Therapeutic targeting and heterogeneity

Distinct assays for progenitor activity

Do these assays identify the same cell populations?

Common pitfalls in assaying tumor initiation

Assaying tumor propagation in grafts

Heterogeneity without hierarchical organization

Efficient tumor initiation by single melanoma cells

b

Patient	Engraftment rate tumours/injections (%)		Melanoma-initiating cell frequency (95% confidence interval)		Weeks to first palpability
205	11/89	(12%)	1/8	(1/5–1/14)	7 ± 2
214	12/73	(16%)	1/6	(1/4–1/10)	10 ± 4
481	40/62	(65%)	1/2	(1/1–1/2)	12 ± 3
487	6/30	(20%)	1/5	(1/3–1/11)	10 ± 1
All	69/254	(27%)	1/4	(1/3–1/5)	11 ± 3

Clonal analysis of tumor growth

Lineage tracing of clonal evolution in prostate cancer

'Re-tracing'

Transient Cre recombination

'Tracing'

Pathway for prostate cancer progression

Loss of basal cells

Castration-resistance

Evolutionary history of a lethal prostate cancer

Clonal analysis of a lethal prostate cancer

Complex heterogeneity in metastatic prostate cancer

Progenitor cells and the origin of cancer

Cell types of the adult prostate

Luminal: AR+, CK18+

Basal: AR-, p63+, CK5+

Neuroendocrine: Syn+

Lineage hierarchy and origin of breast cancer

Basal cell of origin for human prostate cancer?

Luminal cell of origin in organoid culture

Plasticity of basal cells during tumor initiation

Homeostasis and regeneration: CK5-CreER^{T2}/+; R26R-YFP/+

Tumor initiation: *CK5-CreER*^{T2}; *Ptenflox/flox*; *R26R-YFP/*+

Cell lineages and origin of prostate cancer

Luminal cells are favored cells of origin for prostate cancer

Initiation of ERG-positive tumors from hybrid basal-luminal cells

Human prostate tumor-repopulating cells

Two types of tumor-initiating cells in prostate xenografts

Lineage plasticity in development and cancer

"ability of a cell to change from one identity to another"

- A phenotypic change in cellular state at the single-cell level, often in response to microenvironmental signals or drug treatment
- Can occur through alterations at the genomic, epigenetic, transcriptional, or posttranscriptional level
- Can be reversible or irreversible
- Can be difficult to distinguish from clonal selection at the population level

Lineage plasticity in castration-resistant prostate cancer

Transdifferentiation of luminal to neuroendocrine cells

Nkx3.1^{CreERT2/+}; Ptenflox/flox; Trp53^{flox/flox}; R26R-YFP (NPp53)

Neuroendocrine organoid lines from NPp53 mice

Three distinct cell clusters in neuroendocrine organoids

Lineage-tracing analysis of transdifferentiation

Neuroendocrine transdifferentiation in culture

Separate NPPO-1 NE and nonNE cells by flow sorting, mark nonNE cells with H2B-RFP and co-culture

scRNA-seq analysis of transdifferentiation

Screen for differential expression of epigenetic marks

Epigenetic marks at NE gene loci

NSD2 expression is prognostic for poor survival outcomes

Nsd2 KO reverts neuroendocrine phenotypes

Synergy of Nsd2 KO with enzalutamide treatment

Synergy of Nsd2 KO with enzalutamide in grafts

Key takeaways

- "Stemness" in cancer is defined by functional assays that each have advantages and limitations
- Cancer stem cells are a useful concept but may not be readily identifiable in all cancers and/or tumor stages
- Differences in cell of origin may be relevant in some cases for determining tumor properties and patient outcomes
- Cancer stem cells may not represent a well-defined entity in "high-plasticity" tumors