Tumor Microenvironment and Tumor Immunology

Robert Schwabe, MD

Date: 11/05/2025

CANCER CELL BIOLOGY COURSE COLUMBIA UNIVERSITY MEDICAL CENTER, FALL 2025

Today's lecture

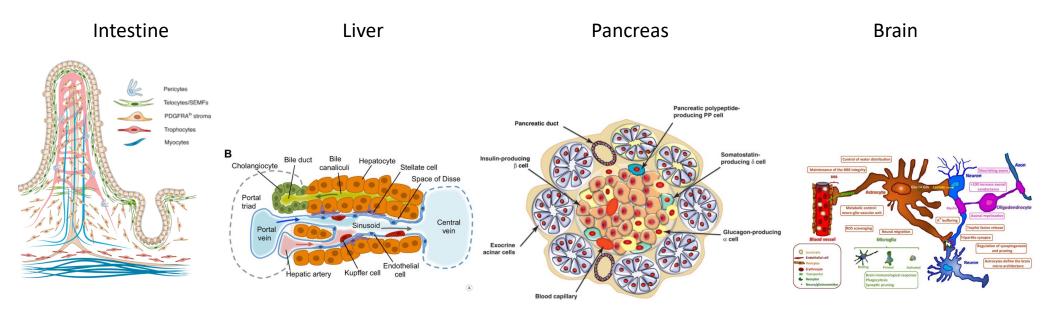
Part I: Tumor microenvironment:

- 1. Components and organization of the TME
- 2. Functions of the TME and role of specific cell types
- 3. Diversity in the TME

Literature: The Biology of Cancer (Weinberg, 3rd ed, 2023) Chapter 13; as well as select papers mentioned in various slides

Part II: Tumor immunology

- 1. Immunosurveillance and immunoediting
- 2. Key cell types contributing to anti-tumor immunity
- 3. Immune checkpoints, exhaustion and mechanisms of immunosuppression.
- 4. "Hot" versus "cold" tumors
- 5. Anti-tumor therapy


(more on that topic also in the lecture by **Dr. Benjamin Izar**)

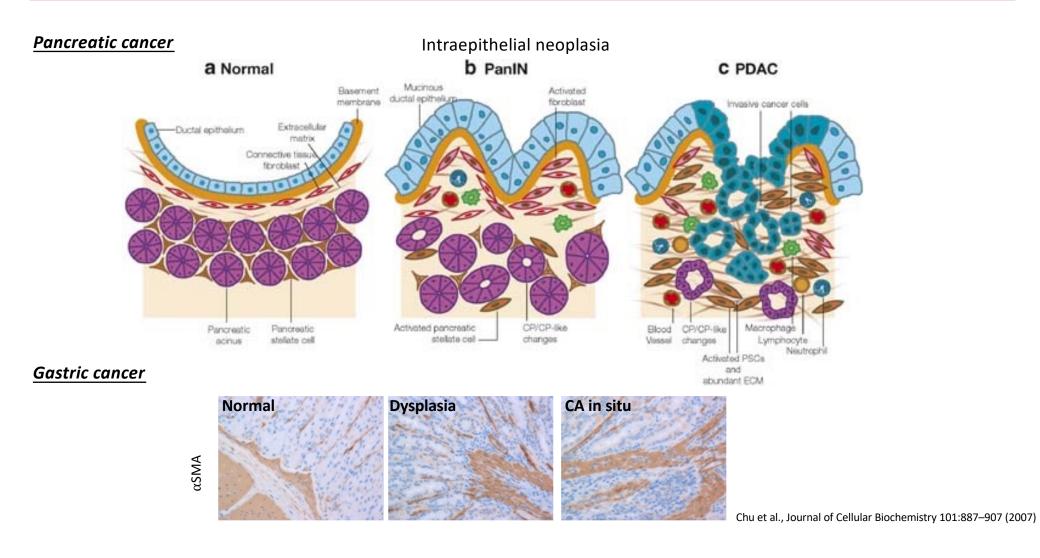
Literature: The Biology of Cancer (Weinberg, 3rd ed, 2023) Chapters 15+16; as well as select papers mentioned in various slides

- Part 1: The Tumor Microenvironment
 - Questions

- Part 2: Part 2: Tumor Immunology
- Questions

Complex and organ-specific architecture and cell-cell communication in normal tissues

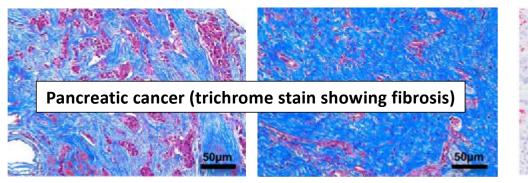
Multiple cell types required to maintain epithelial cell (the source of most tumors) function and communication


Vast differences between organs in organization and cell-cell communication, but conserved patterns

What does a tumor look like?

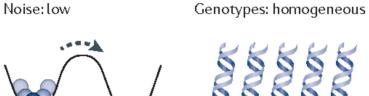
Tumor? Tumor cells + Endothelial cells Pericytes Macrophages Neutrophils Lymphocytes Fibroblasts + ECM Nerves

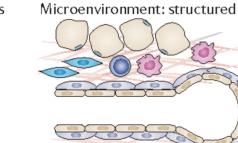
- 1. The tumor-microenvironment (TME) and cell-cell communication with the TME have **organ-specific characteristics**. In some tumors, cells from the TME can constitute >80% of tumor mass (e.g. pancreatic cancer).
- 2. **The TME co-evolves with the tumor.** The tumor requires other cells to grow however, not all cells in the TME are "pro-tumor". The immune system may eliminate tumor cells; cancer-associated fibroblasts (CAF) may encapsulate tumors to inhibit their grow. Over time, tumors, co-opt the TME and turn restriction into promotion.
- 3. Advanced/dedifferentiated/metastatic tumors may lose this organ-specific TME and/or requirement for it (e.g. allowing to metastize/grow in different environments)


Stromal changes can already occur in premalignant stages

The stroma can constitute >50% of the tumor mass in some tumor types

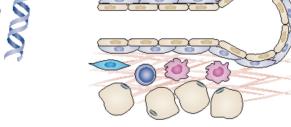
	Estimated % stroma
Esophagus (mostly SCC)	50-82%
Gastric	34%
Liver	50%
Pancreas	83%
Colon	34%
Breast	41-66%
Prostate	40%
Renal	10%
Glioblastoma	10%


Most abundant cell types in stroma-rich tumors are CAF and macrophages

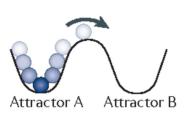


Differences between the normal and tumor microenvironemnt

Normal tissue: Structured organization and robust network/interactions

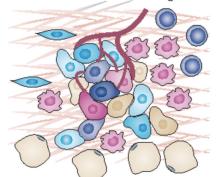


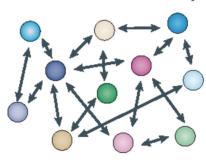
Attractor B


Network architecture: robust

Tumor tissue: High heterogeneity, chaotic organization/high "entropy", reorganized interactions/network

Noise: high


Attractor A

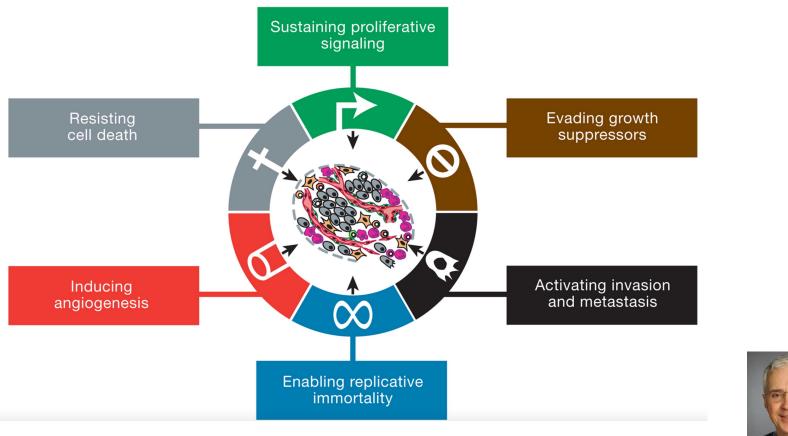

Genotypes: heterogeneous

Microenvironment: disorganized

Network architecture: noisy

Many cell culture models of cancer ignore the TME

Standard 2D tumor cell culture models (usually monocultures)

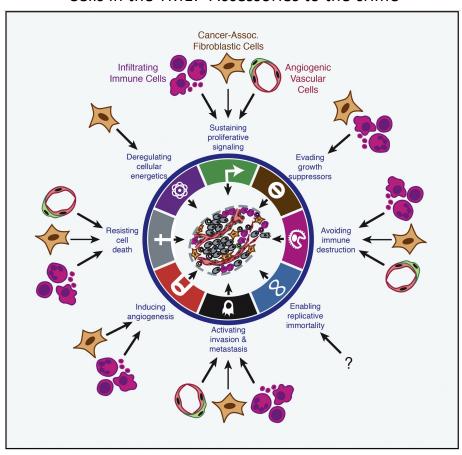

- Absence of cells from the TME such as CAF, inflammatory cells, nerves, vessels
- Absence of tumor-typical ECM; instead plastic surfaces that are over 1000-fold stiffer than tumors
- Most cell lines are selected for these specific cell culture conditions and may therefore differ from tumor cells in vivo (many tumors taken out of mice or people will not easily grow in dishes)

3D models/organoids address some concerns – increasing use of multicellular model

Ok to work with cell lines but have to know what they are useful for and the limitations

2. Functional impact of the TME

Hallmarks of cancer



How does the tumor microenvironment fit into the Hallmark concept/cancer biology?

Cells in the TME: "Accessories to the crime"

Hanahan and Coussens. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell . 2012 Mar 20;21(3):309-22.

Tumor-promoting and tumor-restricting effects of cell in the TME

Tumor restricting

- Immune recognition + destruction
- Growth restriction/encapsulation by ECM

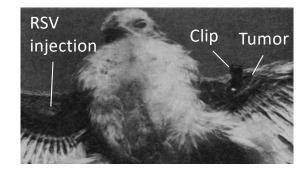
Tumor promoting

- Immunosuppression by MDSC/CAF, ECM
- Tumor-promoting inflammation
- Tumor-promoting angiogenesis
- Tumor-promoting metabolism
- Tumor-promoting fibrosis and stiffness
- Tumor-promoting nerve signals

Caveats:

- The role of the stroma is often tumor-, context- and stage-specific
- In the long run, tumors reprogram the stroma to become tumor promoting

Tumors: "Wounds that do not heal"


"Tumors: Wounds that do not heal" (Dvorak, HF, N Engl J Med 1986)

- In many aspects, tumors resemble wounds with influx of inflammatory cells; fibroblast activation;
 necrosis and ensuing wound healing responses; activation of the coagulation cascade; angiogenesis
- Tumors employ many aspects of this wound healing response to (i) reorganize the environment and
 (ii) utilize the growth/regeneration-promoting aspects of wound healing for their own growth

Wounding promotes cancer development in experimental models.

Wounding promotes tumor formation induced by Rous sarcoma virus (Dolberg et al, *Science* 1985)

Normal fibroblasts can be tumor suppressive

J. Cell Sci. 1, 297-310 (1966)

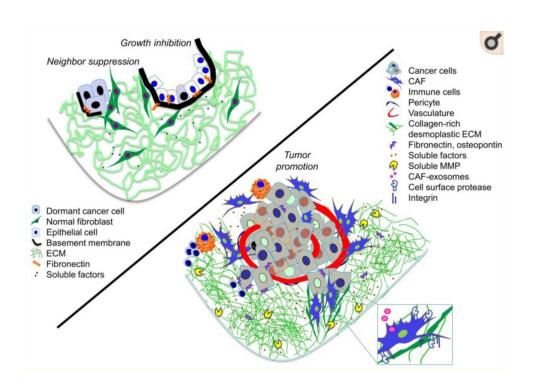
Printed in Great Britain

GROWTH INHIBITION OF POLYOMA-TRANSFORMED CELLS BY CONTACT WITH STATIC NORMAL FIBROBLASTS

M. G. P. STOKER, MOIRA SHEARER AND C. O'NEILL Medical Research Council Experimental Virus Research Unit, Institute of Virology, University of Glasgow

17188–17193 | PNAS | December 2, 2014 | vol. 111 | no. 48

Inhibition of tumor cell proliferation and motility by fibroblasts is both contact and soluble factor dependent


Twana Alkasalias^{a,b}, Emilie Flaberg^a, Vladimir Kashuba^{a,c}, Andrey Alexeyenko^{a,d}, Tatiana Pavlova^a, Andrii Savchenko^a, Laszlo Szekely^a, George Klein^{a,1,2}, and Hayrettin Guven^{a,1}

Article

Opposing roles of hepatic stellate cell subpopulations in hepatocarcinogenesis

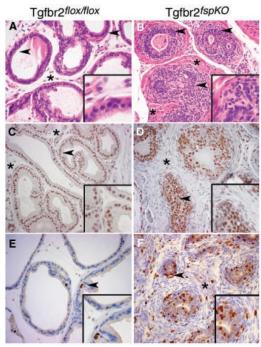
Aveline Filliol¹, Yoshinobu Saito¹¹⁹, Ajay Nair^{1,2,19}, Dianne H. Dapito¹¹⁹, Le-Xing Yu¹¹⁹, Aashreya Ravichandra^{1,14}, Sonakshi Bhattacharjee¹, Silvia Affo¹¹⁵, Naoto Fujiwara³, Hua Su⁴, Qiuyan Sun¹, Thomas M. Savage⁵, John R. Wilson-Kanamori⁹, Jorge M. Caviglia¹¹⁶, LiKang Chin⁷³⁷, Dongning Chen⁷, Xiaobo Wang¹, Stefano Caruso⁸, Jin Ku Kang¹⁹, Amit Dipak Amin¹, Sebastian Wallace⁶, Ross Dobie⁶, Deqi Yin¹, Oscar M. Rodriguez-Fiallos¹, Chuan Yin¹¹⁸, Adam Mehal¹, Benjamin Izar¹, Richard A. Friedman¹⁰, Rebecca G. Wells⁷, Utpal B. Pajvani¹⁰, Yujin Hoshida³, Helen E. Remottii¹¹, Nicholas Arpaia⁵, Jessica Zucman-Rossi⁸, Michael Karin⁴, Neil C. Henderson⁶¹², Ira Tabas^{1,5,11,5} & Robert F. Schwabe^{19,53}

356 | Nature | Vol 610 | 13 October 2022

Multiple mechanisms of suppression:

- Contact and soluble factors involved
- Likely organ-specific mechansims

Activated fibroblasts can be tumor-promoting


TGF-β Signaling in Fibroblasts Modulates the Oncogenic Potential of Adjacent Epithelia

Neil A. Bhowmick, ^{1,4} Anna Chytil, ¹ David Plieth, ² Agnieszka E. Gorska, ^{1,4} Nancy Dumont, ^{2,4} Scott Shappell, ^{3,4} M. Kay Washington, ^{3,4} Eric G. Neilson, ^{2,4} Harold L. Moses ^{1,3,4*}

Approach:


FSP1-Cre x Tgfbr2 fl/fl to delete Tgfbr2 in fibroblasts

Development of PIN

Fig. 1. Loss of TβRII expression in fibroblasts results in prostate intraepithelial neoplasia (PIN).

Development of squamous cell carcinoma

Fig. 2. Squamous cell carcinoma develops in the forestomachs of Tgfbr2^{fspKO} mice.

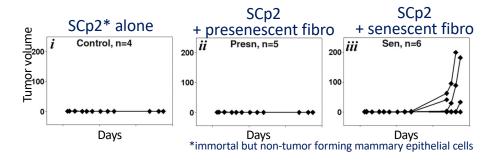
Suggestive of strong effects of altered fibroblasts on neighboring epithelial cells

- Is FSP1-Cre specific to fibroblasts or was there recombination in epithelial cells?
- Is this related to developmental issues as Cre expression may have be turned on early in development?

Activated fibroblasts can be tumor-promoting

[CANCER RESEARCH 60, 1254-1260, March 1, 2000]

Irradiated Mammary Gland Stroma Promotes the Expression of Tumorigenic Potential by Unirradiated Epithelial Cells¹


Mary Helen Barcellos-Hoff² and Shraddha A. Ravani

Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

12072–12077 | PNAS | **October 9, 2001** | vol. 98 | no. 21

Senescent fibroblasts promote epithelial cell growth and tumorigenesis: A link between cancer and aging

Ana Krtolica*, Simona Parrinello*, Stephen Lockett*†, Pierre-Yves Desprez*, and Judith Campisi*§

CellPress

Cancer Cell

Article

Promotion of cholangiocarcinoma growth by diverse cancer-associated fibroblast subpopulations

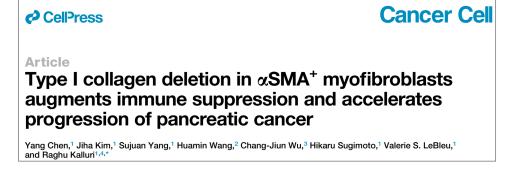
Silvia Affo, ¹ Ajay Nair, ^{2,25} Francesco Brundu, ^{2,25} Aashreya Ravichandra, ^{1,25} Sonakshi Bhattacharjee, ¹ Michitaka Matsuda, ⁵ LiKang Chin, ⁴ Aveline Filliol, ¹ Wen Wen, ¹ Xinhua Song, ⁵ Aubrianna Decker, ⁵ Jeremy Worley, ² Jorge Matias Caviglia, ¹ Lexing Yu, ¹ Degi Yin, ¹ Yoshinobu Saito, ¹ Thomas Savage, ⁷ Rebecca G. Wells, ⁴ Matthias Mack, ⁸ Lars Zender, ^{9,10,11} Nicholas Arpaia, ^{7,12} Helen E. Remotti, ¹³ Raul Rabadan, ² Peter Sims, ¹⁴ Anne-Laure Leblond, ¹⁵ Achim Weber, ¹⁵ Marc-Oliver Riener, ¹⁵ Brent R. Stockwell, ^{6,16} Jellert Gaublomme, ⁶ Josep M. Llovet, ^{17,18,19} Raghu Kalluri, ²⁰ George K. Michalopoulos, ²¹ Ekihiro Seki, ³ Daniela Sia, ¹⁸ Xin Chen, ⁵ Andrea Califano, ^{1,2,12,14,22,23} and Robert F. Schwabe^{1,12,24,26,*}

866 Cancer Cell 39, 866–882, June 14, 2021

Article

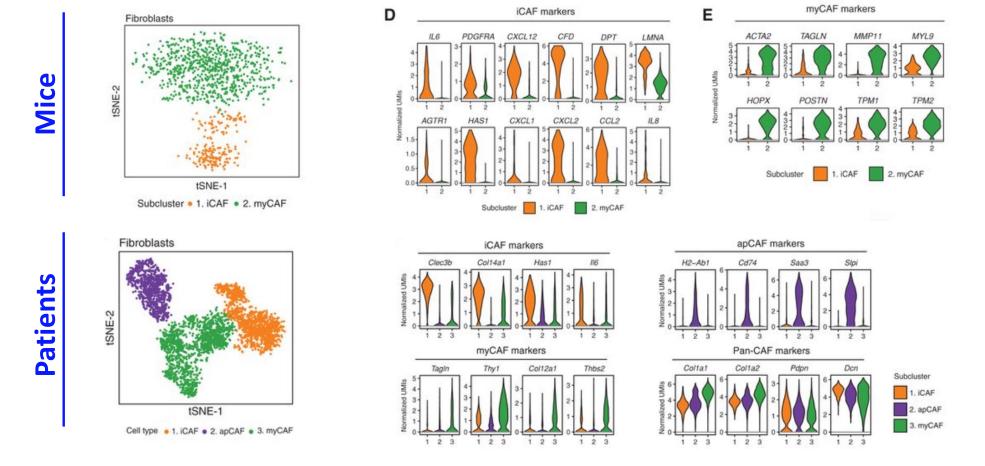
Opposing roles of hepatic stellate cell subpopulations in hepatocarcinogenesis

Aveline Filliol¹, Yoshinobu Saito¹¹⁹, Ajay Nair^{1,2,19}, Dianne H. Dapito¹¹⁹, Le-Xing Yu¹¹⁹, Aashreya Ravichandra^{1,14}, Sonakshi Bhattacharjee¹, Silvia Affo^{1,15}, Naoto Fujiwara³, Hua Su⁴, Qiuyan Sun¹, Thomas M. Savage⁵, John R. Wilson-Kanamori⁶, Jorge M. Caviglia¹¹⁹, LiKang Chin^{2,17}, Dongning Chen⁷, Xiaobo Wang¹, Stefano Caruso⁸, Jin Ku Kang¹⁹, Amit Dipak Amin¹, Sebastian Wallace⁶, Ross Dobie⁶, Deqi Yin¹, Oscar M. Rodriguez-Fiallos¹, Chuan Yin¹¹⁸, Adam Mehal¹, Benjamin Izar¹, Richard A. Friedman¹⁰, Rebecca G. Wells⁷, Utpal B. Pajvan¹¹⁹, Yujin Hoshida³, Helen E. Remotti¹¹, Nicholas Arpaia⁵, Jessica Zucman-Rossi⁸, Michael Karin⁴, Neil C. Henderson⁶¹², Ira Tabas^{1,81,15} & Robert F. Schwabe^{1,930}


356 | Nature | Vol 610 | 13 October 2022

Activated fibroblasts can be tumor-restraining

In most tumors, CAF seem to be tumor promoting. But a different picture in some studies on pancreatic cancer:



Possibility of tumor-promoting and tumor-restricting CAF subpopulations in PDAC and other tumors.

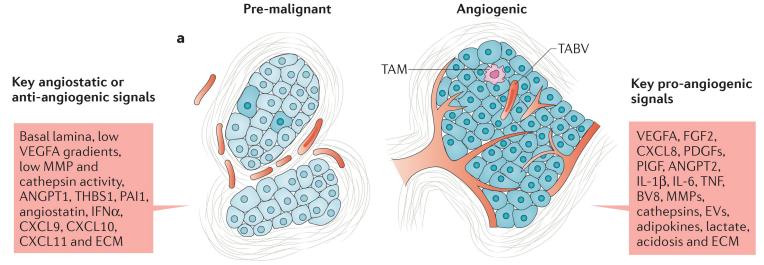
CAF diversity: Inflammatory, antigen-presenting and myofibroblastic CAF

Cross-Species Single-Cell Analysis of Pancreatic Ductal Adenocarcinoma Reveals Antigen-Presenting Cancer-Associated Fibroblasts

Ela Elyada^{1,2}, Mohan Bolisetty^{3,4}, Pasquale Laise⁵, William F. Flynn³, Elise T. Courtois³, Richard A. Burkhart⁶, Jonathan A. Teinor⁶, Pascal Belleau¹, Giulia Biffi^{1,2}, Matthew S. Lucito^{1,2}, Santhosh Sivajothi³, Todd D. Armstrong⁶, Dannielle D. Engle^{1,2,7}, Kenneth H. Yu⁸, Yuan Hao¹, Christopher L. Wolfgang⁶, Youngkyu Park^{1,2}, Jonathan Preall¹, Elizabeth M. Jaffee⁶, Andrea Califano^{5,9,10,11,12}, Paul Robson^{3,13}, and David A. Tuveson^{1,2}

CAF can promote resistance to tumor therapy

 Desmoplastic CAF-rich tumors are often highly resistant to therapy (e.g PDAC, cholangiocarcinoma)


- CAF can mediate resistance to multiple forms of therapy (chemo- and radiotherapy, targeted therapy....) (Chen et al, Nat Rev Drug Discov 2019;18(2):99-115; Feng et al, Cancer Cell Int. 2022 9;22:166)

- These effects can be mediated by soluble factors (e.g. CAF-produced HGF), immune mechanisms, ECM....

How is tumor angiogenesis induced and maintained in the TME?

- The main stimulus for tumor angiogenesis is tumor cell **hypoxia**, which induces secretion of angiogenic factors such as **VEGF** from tumor cells. VEGF acts on endothelial cells, promoting motility of EC ("tip cells") resulting in new vascular sprouts towards the VEGF gradient.
- Tumor vascularization typical for established tumors but not premalignant stages due to smaller size, intact basement membrane and angiostatic signals

Microenvironmental regulation of tumour angiogenesis. De Palma M, Biziato D, Petrova TV. Nat Rev Cancer. 2017 Aug;17(8):457-474.

"Angiogenesis" lecture by Dr. Minah Kim

Crosstalk in the TME maintains angiogenesis

Role of myeloid cells TIE2-expressing TAM CCR3 CSF1R TIE2-expressing TAM CSF1R CCR2 Granylocyte or G-MDSC Monocyte or M-MDSC CCL11 CSF1 CSF3 VEGFA Angiogenesis regulators --> Cell differentiation VEGFA IL-1β, IL-6 or recruitment by FGF2 TNF tumour signals OCXCL8 BV8 Activation of MMP2 or MMP9 WNT7B angiogenesis ANGPT2 Cathepsin

precursors

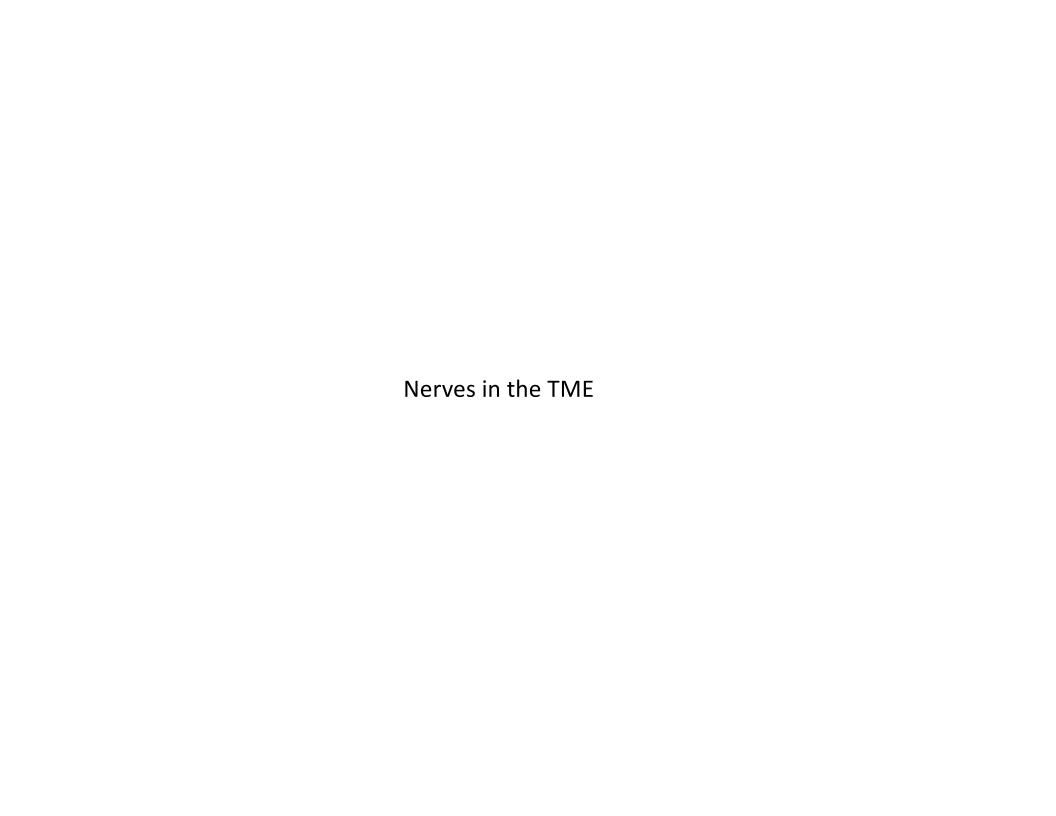
Figure 2 | Myeloid cell regulation of tumour angiogenesis. Various tumour-derived myeloid-cell chemoattractants — such

Angiogenesis regulators membrane VEGFA OCXCL12 OPDGFB Endothelial destabilization Vascular leakage Platelet extravasation ECM Monocyte or LOX and recirculation Vascular Granulocyte or G-MDSC naturation maturation CXCL12 PDGFR VEGFA **PDGFB** Myeloid -

Role of CAF

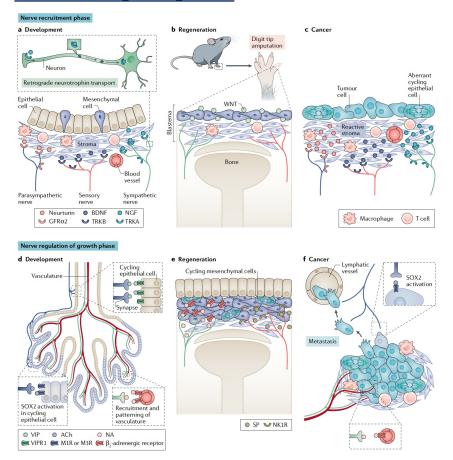
Figure 4 | Chronic wound-healing response promotes tumour angiogenesis. Under the influence of transforming growth

Fibroblast


Microenvironmental regulation of tumour angiogenesis. De Palma M, Biziato D, Petrova TV. Nat Rev Cancer. 2017 Aug;17(8):457-474.

by tumour signals

---> Cell differentiation or recruitment


Activation of angiogenesis

"Angiogenesis" lecture by Dr. Minah Kim

Role of nerves in tumor growth

Nerves are recruited in development, regeneration and cancer and regulate growth

Nerves influence the TME

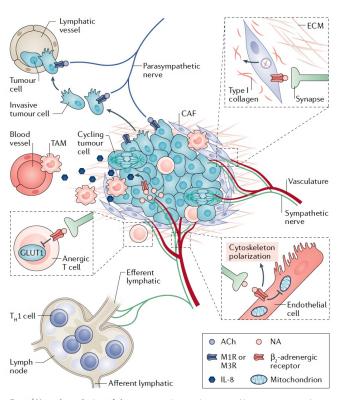
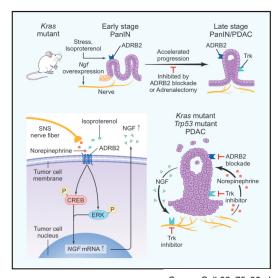


Fig. 3 | Neural regulation of the tumour microenvironment. Nerves interact with

Ali H Zahalka and Paul S Frenette.. Nerves in cancer. Nat Rev Cancer 2020 Mar;20(3):143-157.

Examples of the tumor-promoting effects of nerves

Cancer Cell Article



β2 Adrenergic-Neurotrophin Feedforward Loop Promotes Pancreatic Cancer

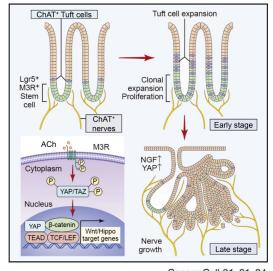
Bernhard W. Renz, 1,2,14 Ryota Takahashi,2,14 Takayuki Tanaka,2 Marina Macchini,2,3 Yoku Hayakawa,2,4 Zahra Dantes,5 H. Carlo Maurer,2 Xiaowei Chen,2,15 Zhengyu Jiang,2 C. Benedikt Westphalen,2,6 Matthias Ilmer,1 Giovanni Valenti,2 Sarajo K. Mohanta,7 Andreas J.R. Habenicht,7 Moritz Middelhoft,1 Timothy Chu,2 Karan Nagar,2 Yagnesh Tailor,2 Riccardo Casadei,3 Mariacristina Di Marco,3 Axel Kleespies,1 Richard A. Friedman,10 Helen Remotti,11 Maximilian Reichert,5 Daniel L. Worthley,2,12 Jens Neumann,10 Jens Werner,1 Alina C. luga,11 Kenneth P. Olive,2,11 and Timothy C. Wang,2,10 Kenneth P. Olive,2,11

Highlights

- Neuropsychological stress accelerates PDAC development
- ADRB2-signaling upregulates NGF and BDNF, thereby increasing nerve density
- Blockade of the ADRB2 and NGF/Trk pathways prolongs survival in KPC mice
- ADRB2 and NGF-BDNF/Trk pathways may be promising targets in PDAC treatment

Timothy Wang, MD

Cancer Cell Article

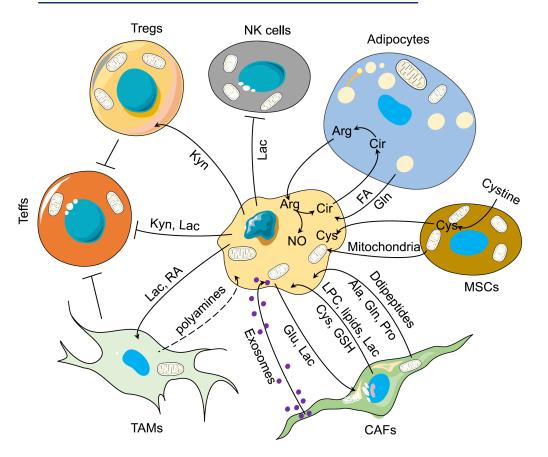


Nerve Growth Factor Promotes Gastric Tumorigenesis through Aberrant Cholinergic Signaling

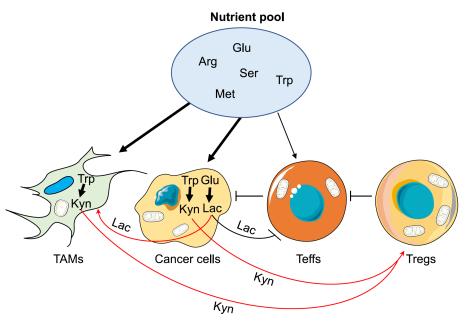
Yoku Hayakawa, ^{1,212} Kosuke Sakitani, ^{1,12} Mitsuru Konishi, ² Samuel Asfaha, ^{1,3} Ryota Niikura, ² Hiroyuki Tomita, ⁴ Bernhard W. Renz, ^{1,3} Yagnesh Tailor, ¹ Marina Macchini, ¹ Moritz Middelhoff, ¹ Zhengyu Jiang, ¹ Takayuki Tanaka, ¹ Zinaida A. Dubeykovskaya, ¹ Woosook Kim, ¹ Xiaowei Chen, ¹ Aleksandra M. Urbanska, ¹ Karan Nagar, ¹ Christoph B. Westphalen, ^{1,5} Michael Quante, ² Chyuan-Sheng Lin, ^{3,6} Michael D. Gershon, ⁹ Akira Hara, ⁴ Chun-Mei Zhao, ¹⁰ Duan Chen, ¹⁰ Daniel L. Worthley, ^{1,11} Kauhiko Koike, ² and Timothy C. Wangi ^{1,32} Lindon, ¹⁰ Changi Lin, ¹⁰ Michael D. Gershon, ¹⁰ Akira Hara, ⁴ Chun-Mei Zhao, ¹⁰ Duan Chen, ¹⁰ Daniel L. Worthley, ^{1,11} Kauhiko Koike, ² and Timothy C. Wangi ^{1,32} Lindon, ¹⁰ Changi Maran Maran

Highlights

- NGF expression is induced in gastric cancer by ACh from nerves and tuft cells
- NGF promotes innervation and proliferation in gastric epithelium
- Blockade of NGF or ablation of cholinergic tuft cells inhibits tumor development
- Cholinergic signaling activates YAP signaling that is essential for Wnt activation

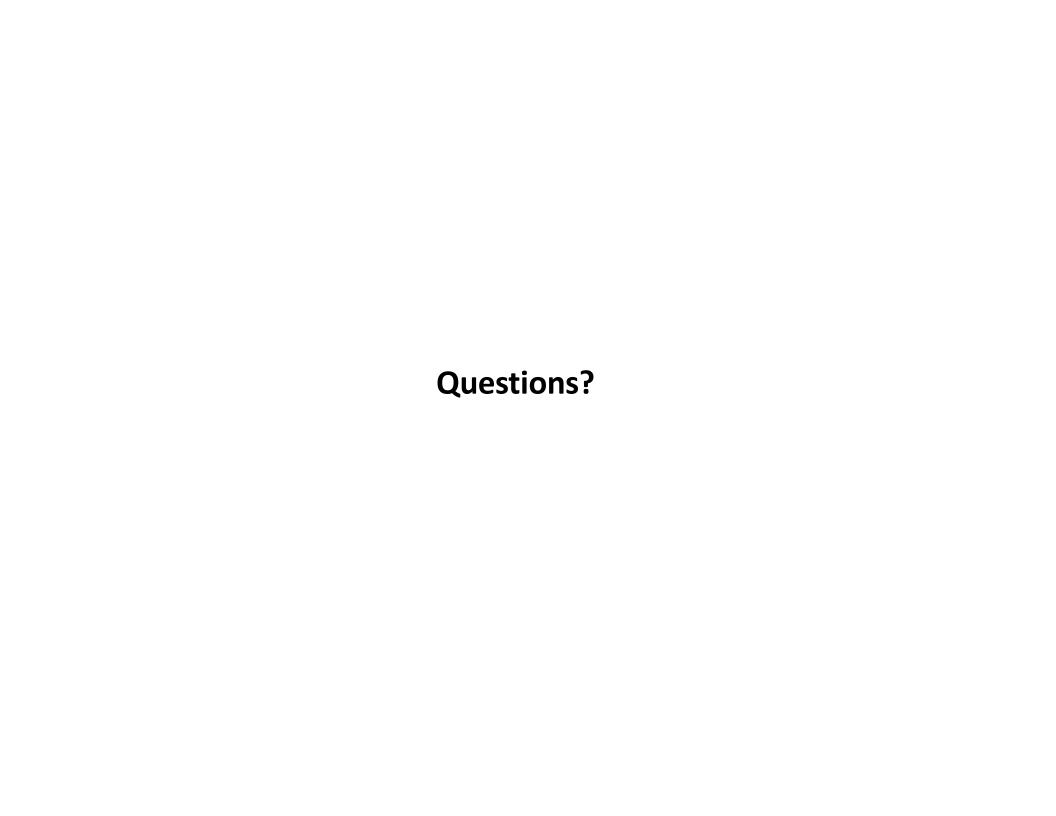

Cancer Cell 33, 75-90, January 8, 2018

Cancer Cell 31, 21-34, January 9, 2017



The TME has an important role in tumor metabolism

Extensive metabolic communication in the TME


Nutrient competition leading to increased Tregs (via kynurenine production in Tu and Mo) and TAM polarization (via lactate from tumor cells)

Fuming Li, M Celeste Simon. Cancer Cells Don't Live Alone: Metabolic Communication within Tumor Microenvironments. Dev Cell 2020 Jul 20;54(2):183-195.

Take home messages on the TME

- Tumor cells grow in a complex microenvironment like other cells in our body
- The TME can be tumor-promoting and tumor-restricting. Tumors often reprogram the TME to their favor.
- The healthy environment can be tumor-restricting and the loss of this restriction is a mechanisms of tumor promotion
- Major roles of CAFs, angiogenesis, nerves and immune cells.
- Metabolism/metabolites recognized as important in the TME crosstalk and tumor progression.
- High diversity in the TME; many subclasses of tumor-suppressing and tumor-promoting immune cells; increasing
 evidence that there is high CAF diversity with sometimes opposing functions

- Part 1: The Tumor Microenvironment (22 slides)
- Questions

- Part 2: Part 2: Tumor Immunology
 - Questions

The birth and rebirth of tumor immunology

The concept of immune surveillance

"It is by no means inconceivable that small accumulations of tumor cells may develop and, because of their possession of new antigenic potentialities, provoke and effective immunological reaction with regression offer tomorrow and no clinical hint of its existence"

Marfarlane Burnet, Immunologist, 1957

The birth and rebirth of tumor immunology

- Tumor transplantation studies in different strains appeared to show that the immune system eradicates tumors. However, this proved to turn out as **allograft rejection** that was not tumor-specific.
- After recognizing this, the focus was on tumor development in immunocompromised Nude mice. There were no
 drastic differences in tumor development. Tumor surveillance by the immune system was for some time
 considered less elevant. In the 1980s, it was recognized that cells such as Nk cells, still present in Nude mice,
 were important for anti-tumor immunity. Tumor surveillance was reconsidered.
- A series of studies demonstrated immunoediting of tumors by the immune system changes of antigen profile and functional consequences of this (unedited tumors were recognized and destroyed when given to the same mouse; edited tumors grew)
- Mice deficient in IFNy signaling displayed profoundly increased tumors when subjected to carcinogens (Kaplan, D. H. et al. Demonstration of an interferon γ-dependent tumor surveillance system in immunocompetent mice. Proc. Natl Acad. Sci. USA 1998. 95, 7556–7561).

letters to nature

IFN \(\gamma\) and lymphocytes prevent primary tumour development and shape tumour immunogenicity

Vijay Shankaran*, Hiroaki Ikeda*, Allen T. Bruce*, J. Michael White*, Paul E. Swanson*, Lloyd J. Old† & Robert D. Schreiber*

Figure 1: Lymphocyte-deficient mice are highly susceptible susceptible to MCA-induced tumour development.

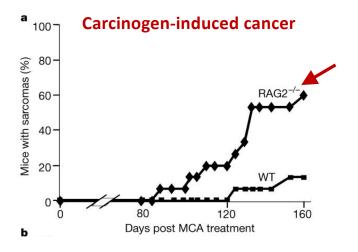
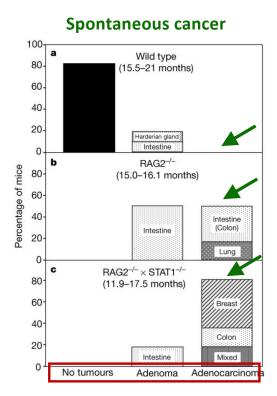
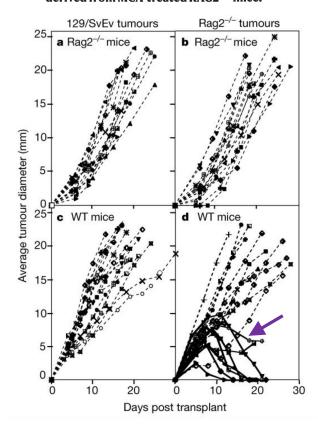
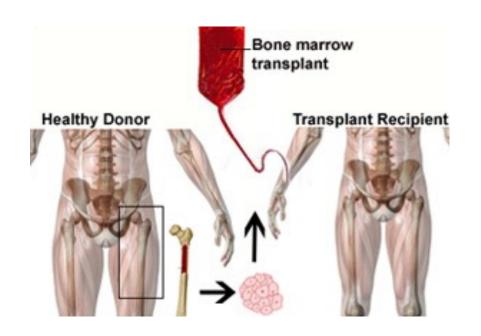


Figure 2: Increased development of spontaneous neoplastic disease in immunodeficient mice.


Figure 3: Increased immunogenicity of tumours derived from MCA-treated RAG2^{7/-} mice.

Increased cancer development in immunosuppressed patients

- Renal transplant patients have a 2.7-fold increased risk of overall cancer development
- Renal transplant patients have a 200-fold risk of non-melanoma skin cancer (Moloney, Br. J. Dermatol. 154: 498–504)
- Heart transplant patients have a 22.7-fold increase in non-Hodgkin's lymphoma (Jiang et al, Am. J. Transplant. 10: 637–45)
- Heart transplant patients have a 2-25-fold increase in lung cancer (Jian et al; Am.J.Transplant.10: 637–45, Pham et al, Ann.Thorac.Surg. 60:1623–26)

Graft-versus-host reactions can eliminate tumors

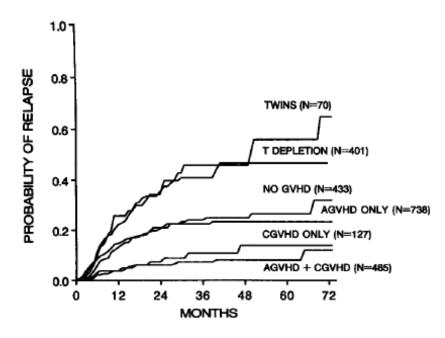
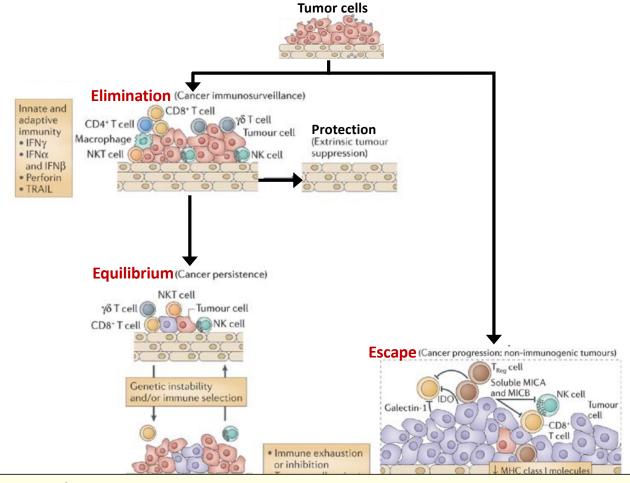
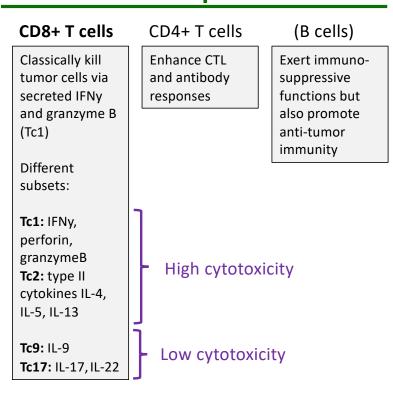



Fig 1. Actuarial probability of relapse after bone marrow transplantation for early leukemia according to type of graft and development of GVHD.

High immune reactivity = less relapse; lowest immune reactivity (twins, T cell depletion) = highest relapse


Immunoediting: Elimination, Equilibrium, Escape

Immunoediting seen in many/most tumors; but it can fail for many reasons including active interference by tumors

Key mediators of anti-tumor immunity

Adaptive Innate

NK cells Kill cells with low MHC I expression as absence of MHC I reduces Expression of "Killer cell immunoglobulin receptors (KIR)

Recognize lipid antigens presented via CD1d Direct killing and

immunomodula tory effects on other immune cells

Type I NKT cells

cted innate-like T-cell population Direct killing of tumor cells via perforin, granzymes and high IFNy

secretion

 $\gamma \delta$ T cells

non-MHC-restri

suppressive, high IL-12, low IL-10 M2 macrophages /TAM immunosupp ressive

M1 macro

M1 tumor-

cDC1 Most efficient Antigen Cross Presenting DC type

Key suppressors of anti-tumor immunity

Treg

FoxP3+ CD4+ T cells that suppress antitumor immunity main on effects on CD8+ CTL and CD4+ T helper cells via CTLA-4.

M2 TAM

Express IL-10, arginase, TGFb

Inhibit T cell function through expression of PD1 and CTLA4 ligands PD-L1 and B7.

Can also promote Treg differentiation and survival and inhibit NK and NKT cells.

MDSC

Immature myeloid cells with characteristics of monocytes and/or neutrophils.

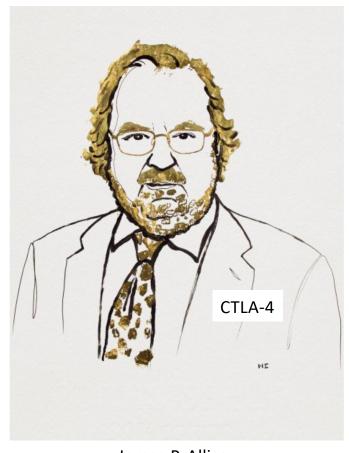
PMN-MDSCs suppress mainly via ROS

M-MDSCs subtypes suppress via expression of ARG1 and NO

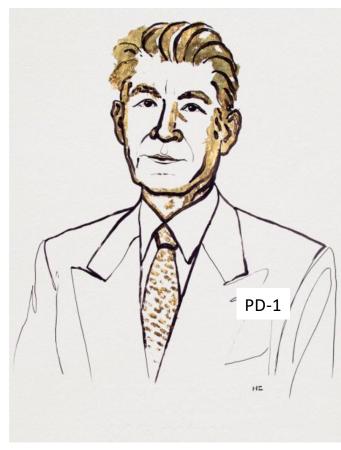
Cancer cells

Immunosuppres sion via expression of **PD-L1**

Immunosuppres sion via MHC class I downregulation

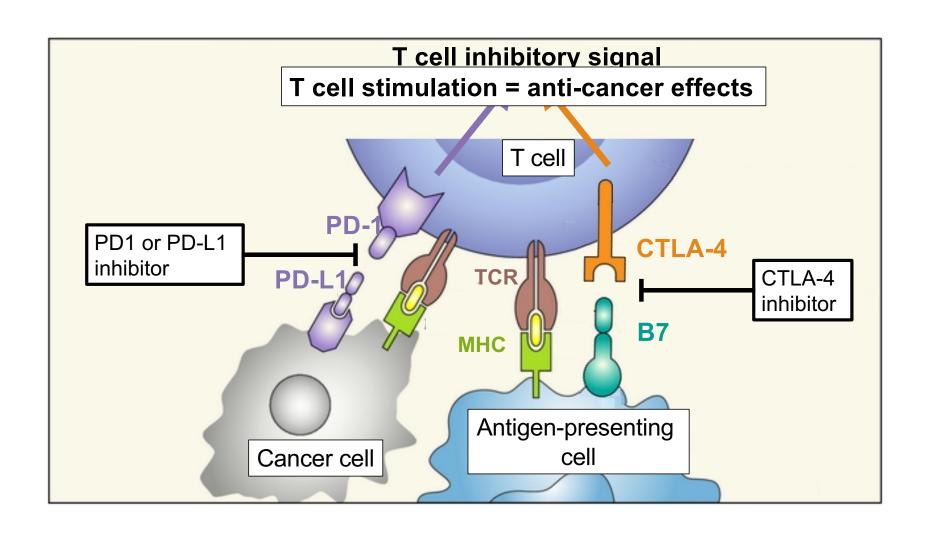

CAF

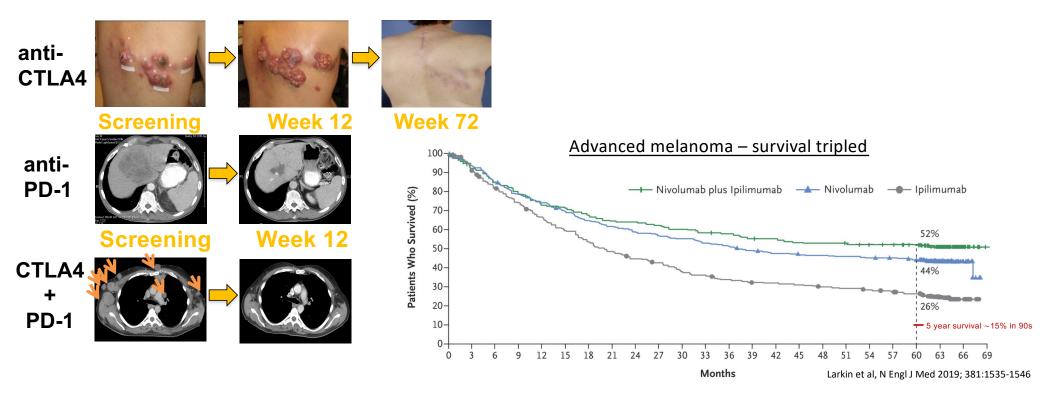
Induction of PD-L1 on other cell types

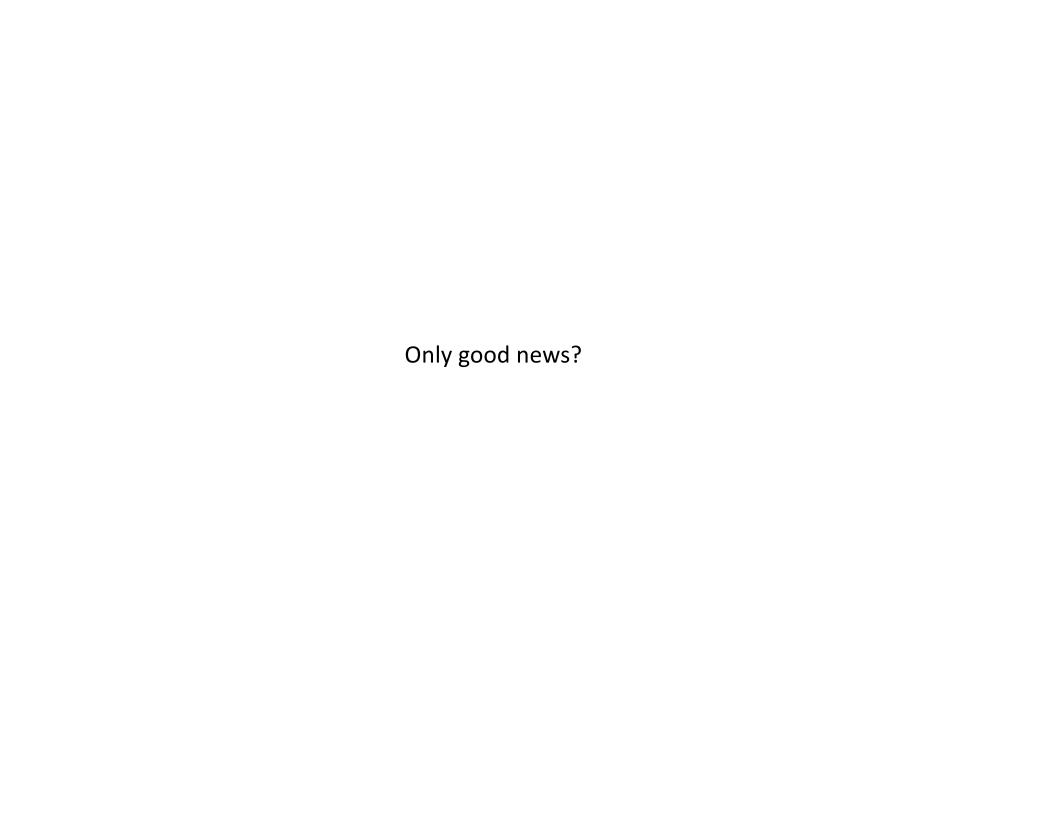

Promote
recruitment or
expansion of
immunosuppres
sive cells such
as Treg, MDSC,
M2
macrophages

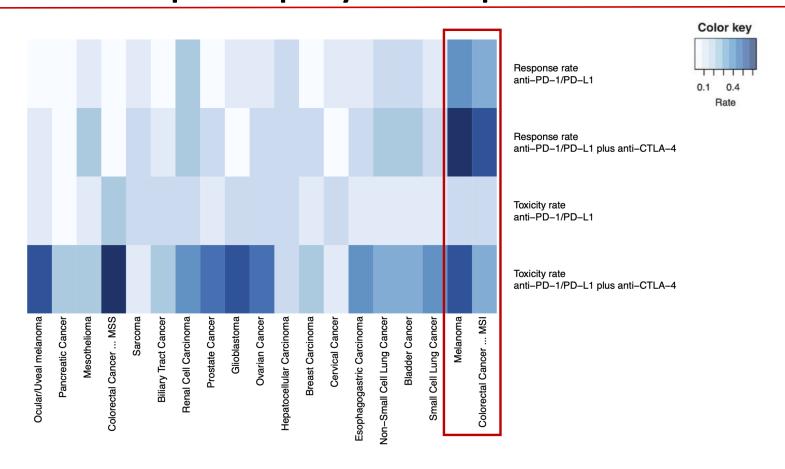
Checkpoint inhibition: One of the biggest breakthroughs in cancer therapy

2018 Nobel Prize: Discovery of cancer therapy by inhibition of negative immune regulation.

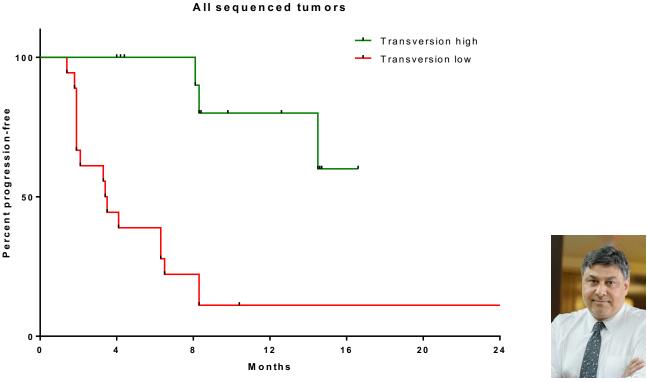



Tasuku Honjo

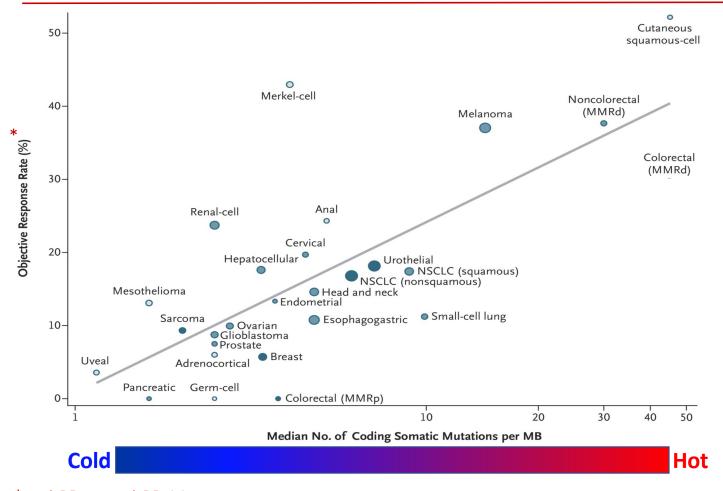

Releasing the brake on anti-tumor responses

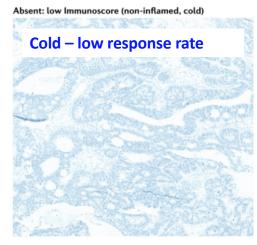

The era of immunotherapy: Responses that were never thought possible

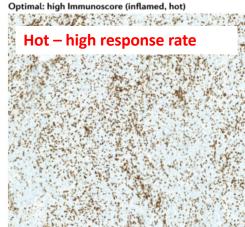
Even cure appears possible in advanced melanoma patients treated with checkpoint inhibitors (up to 20%).


Not all tumors respond equally to checkpoint inhibition

Tumor mutational burden a main determinant of response rates


CANCER IMMUNOLOGY


Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer



Rizvi NA et al, *Science* 2015 Apr 3;348(6230):124-8

Tumor mutational burden a main determinant of response rates Hot vs cold tumors

*anti-PD or anti-PD-L1 treatment

Yarchoan et al, N Engl J Med. 2017 Dec 21;377(25):2500-2501.

A key role of the microbiome in anti-cancer therapies/immunity

1. Microbiome affects chemotherapy in mice

www.sciencemag.org SCIENCE VOL 342 22 NOVEMBER 2013

Commensal Bacteria Control Cancer Response to Therapy by Modulating the Tumor Microenvironment

Noriho Iida, ¹* Amiran Dzutsev, ^{1,2}* C. Andrew Stewart, ¹* Loretta Smith, ¹ Nicolas Bouladoux, ³ Rebecca A. Weingarten, ⁴ Daniel A. Molina, ⁵ Rosalba Salcedo, ¹ Timothy Back, ⁴ Sarah Cramer, ¹ Ren-Ming Dai, ¹² Hiu Kiu, ¹ Marco Cardone, ¹ Shruti Naik, ³ Anil K. Patri, ⁶ Ena Wang, ⁷ Francesco M. Marincola, ^{7,8} Karen M. Frank, ⁴ Yasmine Belkaid, ³ Giorgio Trinchieri, ¹† Romina S. Goldszmid ¹† †

The Intestinal Microbiota Modulates the Anticancer Immune Effects of Cyclophosphamide

Sophie Viaud, ^{1,3} Fabiana Saccheri, ¹ Grégoire Mignot, ^{4,5} Takahiro Yamazaki, ¹ Romain Daillère, ^{1,3} Dalil Hannani, ¹ David P. Enot, ^{1,6} Christina Pfirschke, ⁹ Camilla Engblom, ⁹ Mikael J. Pittet, ⁹ Andreas Schlitzer, ¹⁰ Florent Ginhoux, ¹⁰ Lionel Apetoh, ^{4,5} Elisabeth Chachaty, ¹¹ Geard Eberl, ¹² Marion Bérard, ³¹ Chantal Ecobichon, ^{14,15} Dominique Clermont, ¹⁶ Chantal Bizet, ¹⁶ Valérie Gaboriau-Routhiau, ^{17,18} Nadine Cerf-Bensussan, ^{17,18} Paule Opolon, ^{19,20} Nadia Yessaad, ^{12,22,3,24} Eric Vivier, ^{21,22,23,24} Bernhard Ryffel, ²⁵ Charles O. Elson, ²⁶ Joël Doré, ^{17,27} Guido Kroemer, ^{7,8,28,29,30} Patricia Lepage, ^{17,27} Ivo Gomperts Boneca, ^{14,15} François Ghiringhelli, ^{4,5,6} Laurence Zitvoqel, ^{12,3}†

Reduced effects of chemotherapy in Abxtreated or germ-free mice (P815 mastocytoma, MCA205 sarcoma, MC38 colon cancer, Ret melanoma)

2. Microbiome affects immunotherapy in mice

SCIENCE sciencemag.org

CANCER IMMUNOTHERAPY 27 NOVEMBER 2015 • VOL 350 ISSUE 6264 1079

Commensal *Bifidobacterium* promotes antitumor immunity and facilitates anti-PD-L1 efficacy

Ayelet Sivan, ¹* Leticia Corrales, ¹* Nathaniel Hubert, ² Jason B. Williams, ¹
Keston Aquino-Michaels, ³ Zachary M. Earley, ² Franco W. Benyamin, ¹ Yuk Man Lei, ²
Bana Jabri, ² Maria-Luisa Alegre, ² Eugene B. Chang, ² Thomas F. Gajewski^{1,2}†

CANCER IMMUNOTHERAPY

Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota

Marie Vétizou, ^{1,2,3} Jonathan M. Pitt, ^{1,2,3} Romain Daillère, ^{1,2,3} Patricia Lepage, ⁴ Nadine Waldschmitt, ⁵ Caroline Flament, ^{1,2,6} Sylvie Rusakiewica, ^{1,2,6} Bertrand Routy, ^{1,2,3,6} Maria P. Robert, ^{1,2,6} Connie P. M. Duong, ^{1,2,6} Vichnou Poirier-Colame, ^{1,3,6} Antoine Roux, ^{1,2,7} Sonia Becharef, ^{1,2,6} Silvia Formenti, ⁸ Encouse Golden, ⁸ Sascha Cording, ⁹ Gerard Eberl, ⁹ Andreas Schlitzer, ¹⁰ Florent Ginhoux, ¹⁰ Sridhar Mani, ¹¹ Takahiro Yamazaki, ^{1,2,6} Nicolas Jacquelot, ^{1,2,3} David P. Enot, ^{1,7,12} Marion Bérard, ¹³ Jérôme Nigou, ^{14,15} Paule Opolon, ¹ Alexander Eggermont, ^{1,2,16} Paul-Louis Woerther, ¹⁷ Elisabeth Chachaty, ¹⁷ Nathalie Chaput, ^{1,18} Caroline Robert, ^{1,19} Christina Mateus, ^{1,16} Guido Kroemer, ^{7,12,20,21,22} Didier Raoult, ²³ Ivo Gomperts Boneca, ^{24,25} Franck Carbonnel, ^{3,26} Mathias Chamaillard, ⁵* Laurence Zitvogel^{1,2,3,6} †

Reduced effects of anti-PD-L1 and anti-CTLA-4 therapy in Abx-treated or germ-free mice (B16 melanoma, MCA205 sarcoma)

A key role of the microbiome in anti-cancer therapies

Microbiome required for efficient immunotherapy in patients

Science 359, 91-97 (2018)

CANCER IMMUNOTHERAPY

Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors

Bertrand Routy, ^{1,2,3} Emmanuelle Le Chatelier, ⁴ Lisa Derosa, ^{1,2,5} Connie P. M. Duong, ^{1,2,5} Maryam Tidjani Alou, ^{1,2,5} Romain Daillère, ^{1,2,5} Maria P. Roberti, ^{1,2,5} Aurélie Fluckiger, ^{1,2,5} Meriem Messaoudene, ^{1,2} Conrad Rauber, ^{1,2,5} Maria P. Roberti, ^{1,2,5} Marine Fidelle, ^{1,3,5} Caroline Flament, ^{1,2,5} Vichnou Poirier-Colame, ^{1,2,5} Paule Opolon, ⁶ Christophe Klein, ⁷ Kristina Iribarren, ^{8,9,10,11,12} Laura Mondragón, ^{8,9,10,11,12} Nicolas Jacquelot, ^{1,3,5} Bo Qu, ^{1,2,5} Gladys Ferrere, ^{1,2,5} Céline Clémenson, ^{1,13} Laura Mezquita, ^{1,14} Jordi Remon Masip, ^{1,14} Charles Naltet, ¹⁵ Solenn Brosseau, ¹⁵ Coureche Kaderbhai, ¹⁶ Corentin Richard, ¹⁶ Hira Rizvi, ¹⁷ Florence Levenez, ⁴ Nathalie Galleron, ⁸ Benoit Quinquis, ⁸ Nicolas Pons, ⁸ Bernhard Ryffel, ¹⁸ Véronique Minard-Colin, ^{1,19} Patrick Gonin, ^{1,20} Jean-Charles Soria, ^{1,14} Eric Deutsch, ^{1,13} Yohann Loriot, ^{1,3,14} François Ghiringhelli, ¹⁶ Gérard Zaleman, ¹⁵ François Goldwasser, ^{9,21,22} Bernard Escudier, ^{1,14,23} Matthew D. Hellmann, ^{24,25} Alexander Eggermont, ^{1,2,14} Didier Raoult, ²⁶ Laurence Albiges, ^{1,5,14} Guido Kroemer, ^{8,9,10,11,22} (Taurence Zitvogel ^{1,20,58}

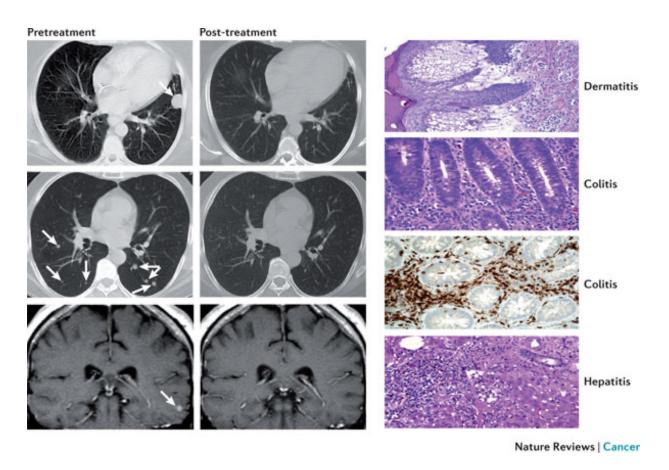
Science **359**, 97–103 (2018)

CANCER IMMUNOTHERAPY

Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients

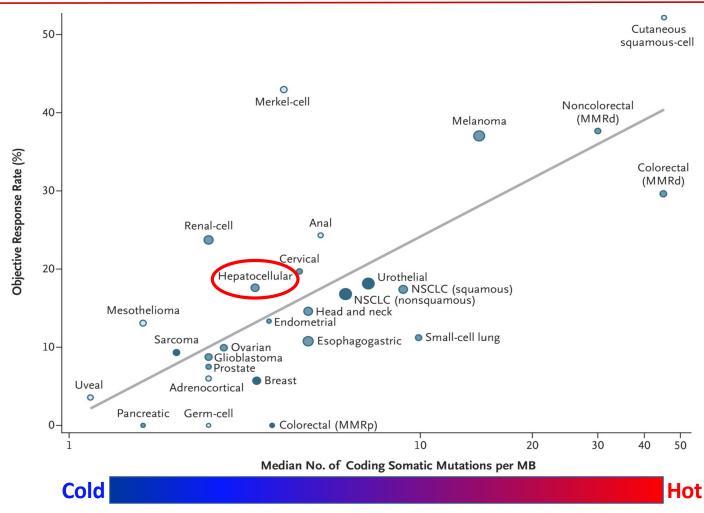
V. Gopalakrishnan, ^{1,2s} C. N. Spencer, ^{2,3s} L. Nezi, ^{3s} A. Reuben, ¹ M. C. Andrews, ¹ T. V. Karpinets, ³ P. A. Prieto, ¹† D. Vicente, ¹ K. Hoffman, ⁸ S. C. Wei, ⁵ A. P. Cogdill, ^{1,5} L. Zhao, ³ C. W. Hudgens, ⁶ D. S. Hutchinson, ⁷ T. Manzo, ³ M. Petaccia de Macedo, ⁶ ¹ † T. Cotechini, ⁸ T. Kumar, ³ W. S. Chen, ⁹ S. M. Reddy, ¹⁰ R. Szczepaniak Sloane, ¹ J. Galloway-Pena, ¹ H. Jiang, ¹ P. L. Chen, ⁹ S. J. Shpall, ¹² K. Rezvani, ¹² A. M. Alousi, ¹² R. F. Chemaly, ¹¹ S. Shelburre, ³ H. J. Wence, ² P. C. Okhuysen, ¹¹ V. B. Jensen, ¹⁴ A. G. Swennes, ⁷ F. McAllister, ¹⁴ E. Marcelo Riquelme Sanchez, ¹⁴ Y. Zhang, ¹⁴ E. Le Chatelier, ¹⁸ L. Zitvogel, ¹⁶ N. Pons, ¹⁵ J. L. Austin-Breneman, ¹|| L. E. Haydu, ¹ E. Le Chatelier, ¹⁸ L. Zitvogel, ¹⁶ N. Pons, ¹⁵ J. L. Austin-Breneman, ¹¹ J. H. E. Haydu, ¹ E. M. Burton, ¹ J. M. Gardner, ¹ E. Sirmans, ¹⁷ J. Hu, ¹⁸ A. J. Lazar, ⁹⁵ T. Tsujikawa, ⁶ A. Diab, ¹⁷ H. Tawbi, ¹⁷ I. C. Glitza, ¹⁷ W. J. J. Hvu, ¹⁷ S. P. Patel, ¹⁸ S. E. Woodman, ⁷ R. N. Amaria, ⁷⁹ M. A. Davis, ¹³ J. F. Gershenvald, ¹ P. Hum, ¹⁷ J. E. Lee, ¹ J. Zhang, ³ L. M. Coussens, ⁸ Z. A. Cooper, ^{1,5} P. A. Futreal, ³ C. R. Daniel, ^{4,2} N. J. Ajami, ⁷ J. F. Petrosino, ⁷ M. T. Tetzlaff, ^{6,9} P. Sharma, ^{5,19} J. P. Allison, ⁵

Science **359**, 104–108 (2018)


CANCER IMMUNOTHERAPY

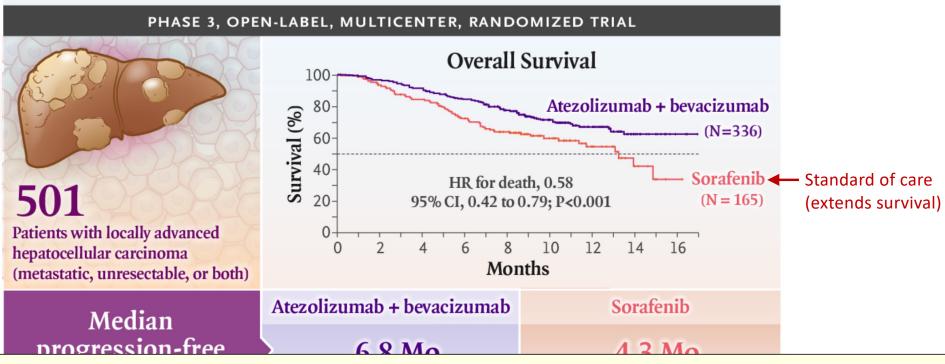
The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients

Vyara Matson,¹* Jessica Fessler,¹* Riyue Bao,^{2,3}* Tara Chongsuwat,⁴ Yuanyuan Zha,⁴ Maria-Luisa Alegre,⁴ Jason J. Luke,⁴ Thomas F. Gajewski^{1,4}†

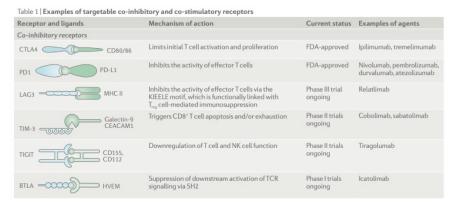

Gut microbial profiles modulate immunotherapy in patients

Checkpoint inhibition can be effective but can have severe autoimmune side effects

Side effects can be severe and life-threatening; higher in anti-CTLA4-treated patients than anti-PD1/PD-L1


Major impact even in moderately responding tumor types (e.g. HCC)

Combination therapies on the horizon – further improvements

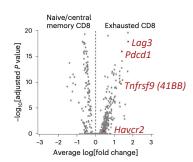


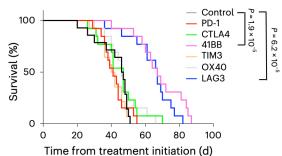
Multiple combination therapies tested in clinical trials in various tumors

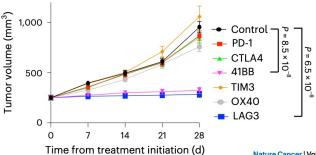
Additional immunotherapies on the horizon

Targetable co-inhibitory and co-stimulatory receptors (immune checkpoints)

Co-stimulatory receptors			
GITR ### 8## GITRL	Promotes activation and proliferation of effector T cells and a reduction in $T_{\rm reg}$ cells	Phase II trials ongoing	TRX518, BMS-986156
OX40 OX40L	Promotes survival, but not priming, of both effector and memory T cells	Phase II trials ongoing	GSK3174998, MEDI6469, PF-04518600
4-1BB 4-1BBL	Promotes T cell proliferation and mitochondrial function and biogenesis	Phase I trials ongoing	Utomilumab, urelumab
ICOS ICOSL	Promotes TCR co-stimulation and $T_{\rm reg}$ cell stimulation	Phase I trials ongoing	Vopratelimab, KY1044, GSK3359609

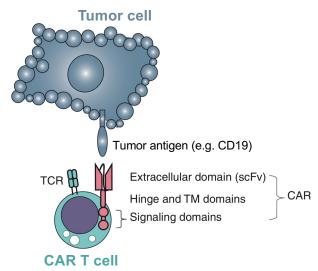

Kraehenbuehl L et al, Nat Rev Clin Onc 2022


Example for efficient therapy with novel checkpoint inhibitors in PDAC mouse models


nature cancer
Article https://doi.org/10.1038/s43018-022-00500-z

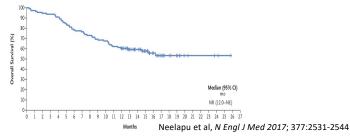
Targeting T cell checkpoints 41BB and LAG3 and myeloid cell CXCR1/CXCR2 results in antitumor immunity and durable response in pancreatic cancer

Pat Gulhati¹². Alalyn Schalck², Shan Jiang⁴, Xiaoying Shang⁴, Chang-Jiun Wu @⁵, Pingping Hou @⁴, Sharia Hernandez Ruiz⁴, Luisa Solis Soto @⁶, Edwin Parra @⁶, Haoqiang Ying @⁷, Jincheng Han⁴, Pisar Bibar Bib

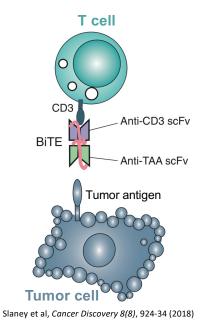


Nature Cancer | Volume 4 | January 2023 | 62-80

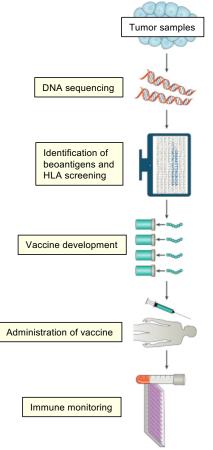
Additional immunotherapies on the horizon


CAR T cells

(Chimeric Antigen Receptor)


Slaney et al, Cancer Discovery 8(8), 924-34 (2018)

Already approved for CD19 in B cell lymphomas with 80% response rates



BiTEs

(Bispecific T cell Engager)

Personalized cancer vaccines

Waldman et al, Nature Reviews Immunology 20, 651–668(2020)

CAR T cell therapies can be extremely promising

Review/perspective on CAR T cells

nature biotechnology

Accepted: 23 September 2024

erspective https://doi.org/10.1038/s41587-024-0244

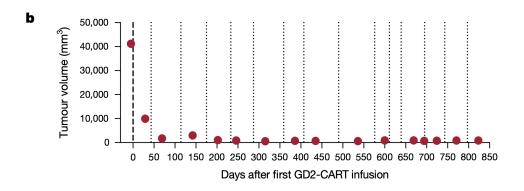
Beyond the blood: expanding CART cell therapy to solid tumors

Received: 1 June 2024 Ugur Uslu © 1.2.3 & Carl H. June © 1.2.3

Apheresis

CAR/TCR
tranduction

Reinfusion


CAR/TCR
T cells

T cell

Example of a study with a complete remission for glioma

Article

Intravenous and intracranial GD2-CAR T cells for H3K27M⁺ diffuse midline gliomas

Nature. 2024 Nov 13. doi: 10.1038/s41586-024-08171-9.

Personalized neoantigen vaccine in PDAC appears promising

Article Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer https://doi.org/10.1038/s41586-023-06063-y Received: 10 January 2023 Accepted: 6 April 2023 Luis A. Rojas 12.18, Zachary Sethna 12.19, Kevin C. Soares 23, Cristina Olcese³, Nan Pang³, Fir Patterson³, Jayon Lihm⁴, Nicholas Ceglia⁴, Pablo Guasp 12, Alexander Chu⁴, Rebecca Yu³, Adrienne Kaya Chandra 13, Theresa Waters 13, Jannifer Ruan 13, Masataka Amisaki 13, Abderezak Zebboudji³, Zagaa Odgerel 14, George Payne¹, Evelvna Perhovanessain⁵, Felicitas Müller⁵, Ina Raw⁴, Anton Dobrin 136, September 14, Debrin 136, Debrin 136, September 14, Debrin 136, September 14, Debrin 136, Debrin

Published online: 10 May 2023

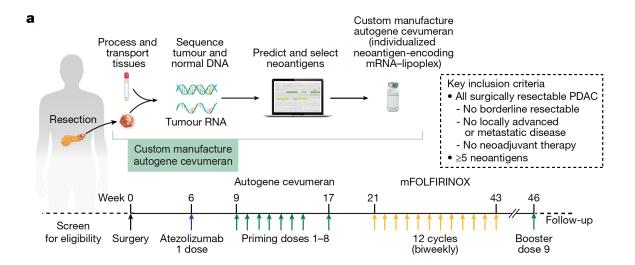
Open access

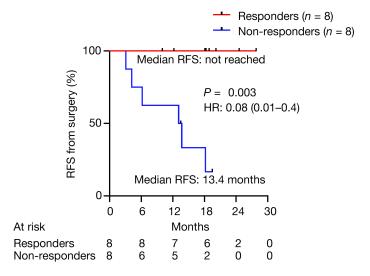
Open access

Check for updates

Michel Sadelain²⁸, Maria Luksza²⁸, Noah Cohen³⁹, Laura Tang³¹, Olca Basturk³⁸, Mithat Gönen³⁰

Seth Katz³⁸, Richard Kinh Do³⁹, Andrew S. Epstein³⁴, Parisa Momtaz³⁴, Wungki Park³³⁴,


Ryan Sugarman¹⁴, Anna M. Varghese³⁴, Elizabeth Won³⁴, Avri Desai³⁴, Alice C. Wei²²,


Michael I. D'Angelica³, T. Peter Kingham²³, Ira Mellman³⁹, Taha Merghoub³⁵,

Jedd D. Wolchok³⁶, Ugur Sahin³, Özlem Türeci³⁶⁸, Benjamin D. Greenbaum ¹⁷²³,

William R. Jarnagin³², Elifee M. De'ipd³³, Eliene M. De Balachandran^{12,358}

144 | Nature | Vol 618 | 1 June 2023

Take home messages on tumor immunity

- There is an active tumor surveillance/immunoediting process that restricts tumor development
- Immune surveillance often fails when tumors grow, e.g. via upregulation of various pathways suppressing immunity
- PD1/PD-L1 and CTLA4 are major immune checkpoints that can suppress anti-tumor immunity
- Immunotherapy is one of the most exciting and successful new cancer therapies from the last decade
- Response rate high for some tumors with high TMB (e.g. melanoma) but low for many others (e.g. PDAC, low TMB)
- Further improvements expected via combination therapies; new checkpoint inhibitors beyond CTLA4 and PD1/PD-L1
- Additional immune-based therapies on the horizon
- Side effects of immunotherapy can be severe/life-threatening.

