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Learning objectives 

✦ Define Chemical Genetics and Chemical Genomics 

✦ Identify advantages of single-cell resolution when examining 
therapeutic response 

✦ Describe scalable and multiplex platforms for Chemical 
Genomics 

✦ Familiarize yourself with approaches for the analysis of large-
scale perturbation data



(2000) Nature Reviews Genetics
(2004) Nature Reviews Drug Discovery

(2023) Nature Reviews Drug Discovery(2001) Genome Biology



The Chemical Genetics Approach

✦ Approaches that use collections of small 
molecules or other treatment modalities to study 
gene product function 

✦ Leverage large chemical or biomolecule libraries 

✦ Function is studied in whole cells or organisms 

✦ Coupled to a variety of readouts that allow 
parallelization (e.g., viability, reporter expression) 

✦ Analogous to genetics, approaches can be 
divided into forward- and reverse-chemical 
genetics screens 

Stockwell, B. (2000) Nature Reviews Genetics



Phenotype-based vs. Target-based Screens
Payghan et al. Drug Designing Against Transmembrane Receptors

FIGURE 4 | Phenotype-based vs. target-based drug discovery. The figure demonstrates the identification of molecular target and lead molecules during early phase

drug discovery process. The phenotype-based approach first obtains lead molecules, and then proceeds with target deconvolution for identifying the targets that

highlights observed phenotypic effects. In target-based approach identification and validation of molecular targets takes place before starting the actual lead discovery

(Reprinted by permission from Macmillan Publishers, Ltd.: Nature Reviews Drug Discovery, ref. [109], copyright 2007).

The site-directed spin labeling and electron paramagnetic
resonance (SDSL-EPR) spectroscopy provides another approach
for studying structure-functions details of ion channels. The
study on K+ channel KcsA outer vestibule is an excellent
example where authors used combined SDSL-EPR and restrained
ensemble (RE) simulations to gain insights on gating-induced
structural dynamics [123]. The combined approach of using EPR-
spectroscopy and computer simulations carries a potential to
answer problems on ion channels [123, 124].

Focused combinatorial chemistry is the best thing that
ever happened to structure-based drug design [117]. Target
knowledge based combinatorial chemistry could guide the
rapid generation of numerous compounds. Michael Milburn
mentioned, “Structure is a really good way of quickly getting
a handle on how the lead compound binds to the target of
interest and what one might be able to do with chemistry to
modify the molecule to get the desired properties” [117]. So,
when we know about the binding profile of any compound we
also know where it can possibly be modified to improve its
druggability. When 3D-structures of the targets are unavailable
the path of structure based drug designing could be nicely guided
by homology/comparative modeling of the target.

Homology Modeling and Molecular
Docking
Structure based studies without experimentally determined
three-dimensional structure availability can be completed with
the help of homology modeling technique. The obvious reason to
perform modeling is rightly stated by Henry A. Bent, “A model
must be wrong, in some respect, else it would be the thing itself.
The trick is to see where it is right” [125].

Homology modeling predicts the tertiary structure of an
unknown protein using known 3D-structure of protein(s) with
homologous sequence as template(s) [126, 127]. Unfortunately,
the 3D-structures of many pharmaceutically important drug
targets like GPCRS and ion channels are not available as
structure elucidation is often hampered by difficulties in isolating
pure protein, diffracting crystals and many other technical

aspects. Homology modeling is based on twomajor observations:
(1) the structure of a protein is uniquely determined by its
amino acid sequence; and (2) during evolution, the structure
changes much slowly than the associated sequence, hence,
similar sequences adopt identical structures and distantly related
sequences fold into similar structures [128, 129]. One of the
most successful and largely used tools for homology modeling
is MODELLER [126, 130, 131]. The first step of homology
modeling is to select an appropriate template for the query
sequence. Alignment is reliable when a structure with high
sequence homology from PDB [132] (>50%) is available. As
identity continues to decrease below 30%, the task of recognizing
the appropriate template becomes increasingly difficult [133].
Methods such as BLAST [134] and PSI-BLAST [135] are often
used for finding templates. After identification of the best
template for comparative modeling, an optimal alignment must
be made, which plays a crucial role in determining the quality
of the model. Methods like Smith Waterman algorithm [136]
Clustal X [137], Dialign [138], Fugue [139], and PROMALS-
3D [140] are routinely employed for sequence alignment. The
issue of low template-target sequence identity is common in
membrane protein modeling. Despite this, it is well accepted
that the members of pLGIC super family adopt similar 3D-
structures. Suitable models can be obtained even with low
sequence identity [23]. Consequently, the use of profile-based
sequence-structure methods like Fugue and PROMALS-3D are
recommended for obtaining reliable IMP models. It is advised
to use multiple templates to increase the sequence coverage for
such cases. Additionally, knowledge of experimental data from
biochemical and pharmacological experiments can be used to
guide the process of model generation by applying structural
restrains. Once a proper target-template alignment is ready,
the model building starts with generation of 3D coordinates of
backbone. After the initial model building, the model should
be optimized using either energy minimization or molecular
dynamics simulation methods. Validation of homology models
is carried out for stereochemical accuracy, fold reliability and
packing quality. Various programs and servers like WhatIf [141],
Procheck [142], Prosa [143], Verify3D [144], and Molprobity
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Forward genetic screen
• Screen for the ability to induce 

a phenotype of interest

Reverse genetic screen
• Identify ligands to a target of 

interest

Stockwell, B. (2000) Nature Reviews Genetics



From Chemical Genetics to Chemical Genomics
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✦ Early approaches coupled perturbations to gene expression readouts using DNA 
microarrays



From Chemical Genetics to Chemical Genomics

✦ Marton et al. established the idea of a chemical signature to classify on/off target 
effects of inhibition of calcineurin signaling 

✦ Hughes et al. proposed a compendium of signatures for gene loss-of-function in yeast
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From Chemical Genetics to Chemical Genomics

✦ Advances have focused on coupling chemical genetics screen to scalable 
molecular readouts

Lamb, J. (2006) Science
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Connectivity Map

Subramanian, A. (2017) Cell
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Library of Integrated Network-based Cellular Signatures (LINCS)

Dependency Map



From Chemical Genetics to Chemical Genomics

Bush, E.C. (2017) Nature Communications Ye, C. (2018) Nature Communications

Plate-seq Drug-seq

✦ Unbiased gene expression profiling of drug-induced molecular effects by sample 
multiplexing of unique conditions during reverse transcription



Chemical genomics at single-cell resolution

Zhang. et. al. (2025) bioRxiv*Srivatsan, S., *McFaline-Figueroa, J.L., *Ramani, V. et al. (2020). Science.



The expanding single-cell chemical genomics toolkit

Wyatt, A. et. al. (2025) Biochemical Journal (accepted in principle)



single-cell genomics experiments, as some cell fate decisions are
governed by a single pair of mutually exclusive regulators. For ex-
ample, the myeloid/erythroid fate decision in common myeloid
progenitor cells is made via the mutually antagonistic transcrip-
tion factors PU.1 (encoded by SPI1) and GATA1 (Rekhtman et al.
1999). In the hypothetical experiment, onemight observe the pat-
tern on the left side of Figure 1A and conclude that the genes in
question are expressed mutually exclusively. However, if the pop-
ulation consisted of a mixture of two separate groups of cells, this
conclusion might be incorrect. Grouping the cells properly by
type, and then performing the analysis could reveal the genes are
in fact positively correlated, not negatively correlated. That is, fail-
ing to properly compartmentalize the data by cell type leads to a
qualitatively incorrect interpretation. The misleading effects of
Simpson’s Paradox are likely to be pervasive in modern experi-
ments using bulk assays.

Another crucial reason that single-cell measurements are nec-
essary to define cell states is that bulk measurements confound
changes due to gene regulation with those due to shifts in cell
type composition. Consider an experiment aimed at studying
the effect of a drug on a tissue composed of two cell types. (Fig.
1B) Suppose a certain gene’s expression is measured via bulk-cell
analysis before and after treatmentwith the drug. Uponmeasuring
a major increase in the gene’s expression, one might surmise that
the drug causes an up-regulation of the gene in the relevant cells.
However, it might instead be that the drug stimulates cell division
in one of the two subpopulations. Bulk assays cannot discriminate
between these two cases.

Time series studies of gene expression, which are foundation-
al for examining dynamic processes in development and disease
progression, also suffer from averaging in bulk studies. For exam-
ple, differentiating cellsmight transition through a sequence of in-
termediate states on the way to becoming fully mature. However,
they typically do not do so in a synchronizedmanner, so sampling

a population of them at any particularmoment in timewill yield a
mixture of cells from different stages, as illustrated in Figure
1C. Tracking the time-average expression of a gene of interest
might yield a qualitatively misleading picture of that gene’s devel-
opmental regulation. If we could reorder the cells on the horizon-
tal axis, we would see a faithful representation of the gene’s
expression dynamics during development.

Bulk measurements are thus fundamentally constrained by
averaging. Accurately defining the cell types and states in our bod-
ies and explaining how they arise in development and disease de-
mands single-cell measurements.

Technological advances in cellular state measurement
Next-generation sequencing has proven to be a remarkably sen-
sitive means of monitoring gene expression, epigenetic configu-
ration, nuclear structure, and other aspects of cellular state.
However, most assays require a minimum level of input material
that exceeds that of a single cell. Over the past several years, a num-
ber of sequencing-based assays have been optimized to work at the
level of individual cells. These improvements have primarily
stemmed from breakthroughs in amplification techniques, modi-
fications to reverse transcriptase that improve processivity and en-
able controlled template switching, and the development of
instruments that physically capture and isolate individual cells.

Most single-cell genomics assays have been adapted from
similar techniques developed for analyzing bulk-cell populations
(Table 1). The most widely used of these is RNA-seq, which mea-
sures global gene expression by reverse transcribing RNA into
cDNA and sequencing it (Cloonan et al. 2008; Mortazavi et al.
2008; Nagalakshmi et al. 2008). Counting the reads that originate
from each gene yields a measure of its expression. Single-cell ver-
sions of the RNA-seq protocol isolate individual cells in microflui-
dic capillaries (Wu et al. 2013), by serial dilution, or via flow

Figure 1. Single-cell measurements preserve crucial information that is lost by bulk genomics assays. (A) Simpson’s Paradox describes the misleading
effects that arise when averaging signals from multiple individuals. (B) Bulk measurements cannot distinguish changes due to gene regulation from those
that arise due to shifts in the ratio of different cell types in a mixed sample. (C) Time series experiments are affected by averaging when cells proceed
through a biological process in an unsynchronized manner. A single time point may contain cells from different stages in the process, obscuring the dy-
namics of relevant genes. Reordering the cells in “pseudotime” according to biological progress eliminates averaging and recovers the true signal in ex-
pression (Trapnell et al. 2014).

Trapnell
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governed by a single pair of mutually exclusive regulators. For ex-
ample, the myeloid/erythroid fate decision in common myeloid
progenitor cells is made via the mutually antagonistic transcrip-
tion factors PU.1 (encoded by SPI1) and GATA1 (Rekhtman et al.
1999). In the hypothetical experiment, onemight observe the pat-
tern on the left side of Figure 1A and conclude that the genes in
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ing to properly compartmentalize the data by cell type leads to a
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Simpson’s Paradox are likely to be pervasive in modern experi-
ments using bulk assays.
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However, it might instead be that the drug stimulates cell division
in one of the two subpopulations. Bulk assays cannot discriminate
between these two cases.
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al for examining dynamic processes in development and disease
progression, also suffer from averaging in bulk studies. For exam-
ple, differentiating cellsmight transition through a sequence of in-
termediate states on the way to becoming fully mature. However,
they typically do not do so in a synchronizedmanner, so sampling
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mixture of cells from different stages, as illustrated in Figure
1C. Tracking the time-average expression of a gene of interest
might yield a qualitatively misleading picture of that gene’s devel-
opmental regulation. If we could reorder the cells on the horizon-
tal axis, we would see a faithful representation of the gene’s
expression dynamics during development.

Bulk measurements are thus fundamentally constrained by
averaging. Accurately defining the cell types and states in our bod-
ies and explaining how they arise in development and disease de-
mands single-cell measurements.
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Next-generation sequencing has proven to be a remarkably sen-
sitive means of monitoring gene expression, epigenetic configu-
ration, nuclear structure, and other aspects of cellular state.
However, most assays require a minimum level of input material
that exceeds that of a single cell. Over the past several years, a num-
ber of sequencing-based assays have been optimized to work at the
level of individual cells. These improvements have primarily
stemmed from breakthroughs in amplification techniques, modi-
fications to reverse transcriptase that improve processivity and en-
able controlled template switching, and the development of
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Most single-cell genomics assays have been adapted from
similar techniques developed for analyzing bulk-cell populations
(Table 1). The most widely used of these is RNA-seq, which mea-
sures global gene expression by reverse transcribing RNA into
cDNA and sequencing it (Cloonan et al. 2008; Mortazavi et al.
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single-cell genomics experiments, as some cell fate decisions are
governed by a single pair of mutually exclusive regulators. For ex-
ample, the myeloid/erythroid fate decision in common myeloid
progenitor cells is made via the mutually antagonistic transcrip-
tion factors PU.1 (encoded by SPI1) and GATA1 (Rekhtman et al.
1999). In the hypothetical experiment, onemight observe the pat-
tern on the left side of Figure 1A and conclude that the genes in
question are expressed mutually exclusively. However, if the pop-
ulation consisted of a mixture of two separate groups of cells, this
conclusion might be incorrect. Grouping the cells properly by
type, and then performing the analysis could reveal the genes are
in fact positively correlated, not negatively correlated. That is, fail-
ing to properly compartmentalize the data by cell type leads to a
qualitatively incorrect interpretation. The misleading effects of
Simpson’s Paradox are likely to be pervasive in modern experi-
ments using bulk assays.

Another crucial reason that single-cell measurements are nec-
essary to define cell states is that bulk measurements confound
changes due to gene regulation with those due to shifts in cell
type composition. Consider an experiment aimed at studying
the effect of a drug on a tissue composed of two cell types. (Fig.
1B) Suppose a certain gene’s expression is measured via bulk-cell
analysis before and after treatmentwith the drug. Uponmeasuring
a major increase in the gene’s expression, one might surmise that
the drug causes an up-regulation of the gene in the relevant cells.
However, it might instead be that the drug stimulates cell division
in one of the two subpopulations. Bulk assays cannot discriminate
between these two cases.

Time series studies of gene expression, which are foundation-
al for examining dynamic processes in development and disease
progression, also suffer from averaging in bulk studies. For exam-
ple, differentiating cellsmight transition through a sequence of in-
termediate states on the way to becoming fully mature. However,
they typically do not do so in a synchronizedmanner, so sampling

a population of them at any particularmoment in timewill yield a
mixture of cells from different stages, as illustrated in Figure
1C. Tracking the time-average expression of a gene of interest
might yield a qualitatively misleading picture of that gene’s devel-
opmental regulation. If we could reorder the cells on the horizon-
tal axis, we would see a faithful representation of the gene’s
expression dynamics during development.

Bulk measurements are thus fundamentally constrained by
averaging. Accurately defining the cell types and states in our bod-
ies and explaining how they arise in development and disease de-
mands single-cell measurements.

Technological advances in cellular state measurement
Next-generation sequencing has proven to be a remarkably sen-
sitive means of monitoring gene expression, epigenetic configu-
ration, nuclear structure, and other aspects of cellular state.
However, most assays require a minimum level of input material
that exceeds that of a single cell. Over the past several years, a num-
ber of sequencing-based assays have been optimized to work at the
level of individual cells. These improvements have primarily
stemmed from breakthroughs in amplification techniques, modi-
fications to reverse transcriptase that improve processivity and en-
able controlled template switching, and the development of
instruments that physically capture and isolate individual cells.

Most single-cell genomics assays have been adapted from
similar techniques developed for analyzing bulk-cell populations
(Table 1). The most widely used of these is RNA-seq, which mea-
sures global gene expression by reverse transcribing RNA into
cDNA and sequencing it (Cloonan et al. 2008; Mortazavi et al.
2008; Nagalakshmi et al. 2008). Counting the reads that originate
from each gene yields a measure of its expression. Single-cell ver-
sions of the RNA-seq protocol isolate individual cells in microflui-
dic capillaries (Wu et al. 2013), by serial dilution, or via flow

Figure 1. Single-cell measurements preserve crucial information that is lost by bulk genomics assays. (A) Simpson’s Paradox describes the misleading
effects that arise when averaging signals from multiple individuals. (B) Bulk measurements cannot distinguish changes due to gene regulation from those
that arise due to shifts in the ratio of different cell types in a mixed sample. (C) Time series experiments are affected by averaging when cells proceed
through a biological process in an unsynchronized manner. A single time point may contain cells from different stages in the process, obscuring the dy-
namics of relevant genes. Reordering the cells in “pseudotime” according to biological progress eliminates averaging and recovers the true signal in ex-
pression (Trapnell et al. 2014).
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stochastic gene transcription96,98,99 (Figure 1C). Recent studies have 
also reported instances of cells preferentially expressing a single 
allele32 or a single splice isoform75; however, the low mRNA cap-
ture efficiency of scRNA-seq makes it difficult to draw definitive 
conclusions about allele-specific or isoform-specific expression at 
the single-cell level.

The inherent gene expression variability between cells in scRNA-
seq data can be used to infer gene regulatory networks (GRNs)100–102. 
Most commonly, genes are grouped into co-regulated “modules” on 
the basis of expression profile similarity16,52,75,86,87,103 (Figure 1D). 
Network inference from scRNA-seq data poses several challenges. 
Owing to low capture efficiency and stochastic gene expression, 
gene dropout (where gene expression is zero in a given cell) is quite 
common, leading to zero-inflated expression data104. Although 
zero-inflated distributions can be used to accommodate expected 

dropout104–106, such models also have a greater number of parameters 
and can be more difficult to fit than a simpler model, particularly 
when sample size is limited. As previously mentioned, scRNA-
seq data are very noisy, and separating biological variation from 
technical noise remains a non-trivial problem35,36. Additionally, the 
number of model parameters to be estimated (genes and gene inter-
actions) usually greatly exceeds the number of sample observations 
(cells measured), and this disparity poses challenges for param-
eter estimation107,108. Simplifying the model on the basis of prior 
knowledge or focusing on only a small subnetwork of key play-
ers may be necessary to make parameter estimation feasible107–110. 
Finally, experimentally validating inferred GRNs can be very 
difficult; whereas knocking out a single gene is relatively straight-
forward, disrupting interactions between two proteins or between a 
protein and its target sequence can be much harder, and very few 
hypothesized models have been rigorously tested thus far.

Figure 1. Common applications of single-cell RNA sequencing. (a) Deconvolving heterogeneous cell populations. Clustering by 
single-cell transcriptomic profiles can reveal population substructure and enable the identification of cell subtypes and rare cell species 
(e.g. red cells above). Clusters may be tight and well defined (purple, red) or diffuse (blue). (b) Trajectory analysis of cell state transitions. 
Single-cell RNA sequencing time-series data can be used to map cell developmental trajectories over the course of dynamic processes 
such as differentiation or signaling responses to an external stimulus. Some computational suites (e.g. Monocle6) can also accommodate 
branching trajectories, enabling identification of lineage-specific gene expression and key genes that drive branching events. (c) Dissecting 
transcription mechanics. Genes’ expression profiles across many cells can be compared to study transcriptional bursting and to model the 
kinetics of stochastic gene expression. (d) Network inference. Genes can be clustered by expression profile to identify modules of putatively 
co-regulated genes, and gene-gene covariation relationships can be used to infer gene regulatory networks or subnetworks.
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Adapted from: Liu, S.,  Trapnell, C. (2016) F1000 Research.

Deconvolve populations

single-cell genomics experiments, as some cell fate decisions are
governed by a single pair of mutually exclusive regulators. For ex-
ample, the myeloid/erythroid fate decision in common myeloid
progenitor cells is made via the mutually antagonistic transcrip-
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1999). In the hypothetical experiment, onemight observe the pat-
tern on the left side of Figure 1A and conclude that the genes in
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ulation consisted of a mixture of two separate groups of cells, this
conclusion might be incorrect. Grouping the cells properly by
type, and then performing the analysis could reveal the genes are
in fact positively correlated, not negatively correlated. That is, fail-
ing to properly compartmentalize the data by cell type leads to a
qualitatively incorrect interpretation. The misleading effects of
Simpson’s Paradox are likely to be pervasive in modern experi-
ments using bulk assays.

Another crucial reason that single-cell measurements are nec-
essary to define cell states is that bulk measurements confound
changes due to gene regulation with those due to shifts in cell
type composition. Consider an experiment aimed at studying
the effect of a drug on a tissue composed of two cell types. (Fig.
1B) Suppose a certain gene’s expression is measured via bulk-cell
analysis before and after treatmentwith the drug. Uponmeasuring
a major increase in the gene’s expression, one might surmise that
the drug causes an up-regulation of the gene in the relevant cells.
However, it might instead be that the drug stimulates cell division
in one of the two subpopulations. Bulk assays cannot discriminate
between these two cases.

Time series studies of gene expression, which are foundation-
al for examining dynamic processes in development and disease
progression, also suffer from averaging in bulk studies. For exam-
ple, differentiating cellsmight transition through a sequence of in-
termediate states on the way to becoming fully mature. However,
they typically do not do so in a synchronizedmanner, so sampling

a population of them at any particularmoment in timewill yield a
mixture of cells from different stages, as illustrated in Figure
1C. Tracking the time-average expression of a gene of interest
might yield a qualitatively misleading picture of that gene’s devel-
opmental regulation. If we could reorder the cells on the horizon-
tal axis, we would see a faithful representation of the gene’s
expression dynamics during development.

Bulk measurements are thus fundamentally constrained by
averaging. Accurately defining the cell types and states in our bod-
ies and explaining how they arise in development and disease de-
mands single-cell measurements.

Technological advances in cellular state measurement
Next-generation sequencing has proven to be a remarkably sen-
sitive means of monitoring gene expression, epigenetic configu-
ration, nuclear structure, and other aspects of cellular state.
However, most assays require a minimum level of input material
that exceeds that of a single cell. Over the past several years, a num-
ber of sequencing-based assays have been optimized to work at the
level of individual cells. These improvements have primarily
stemmed from breakthroughs in amplification techniques, modi-
fications to reverse transcriptase that improve processivity and en-
able controlled template switching, and the development of
instruments that physically capture and isolate individual cells.

Most single-cell genomics assays have been adapted from
similar techniques developed for analyzing bulk-cell populations
(Table 1). The most widely used of these is RNA-seq, which mea-
sures global gene expression by reverse transcribing RNA into
cDNA and sequencing it (Cloonan et al. 2008; Mortazavi et al.
2008; Nagalakshmi et al. 2008). Counting the reads that originate
from each gene yields a measure of its expression. Single-cell ver-
sions of the RNA-seq protocol isolate individual cells in microflui-
dic capillaries (Wu et al. 2013), by serial dilution, or via flow

Figure 1. Single-cell measurements preserve crucial information that is lost by bulk genomics assays. (A) Simpson’s Paradox describes the misleading
effects that arise when averaging signals from multiple individuals. (B) Bulk measurements cannot distinguish changes due to gene regulation from those
that arise due to shifts in the ratio of different cell types in a mixed sample. (C) Time series experiments are affected by averaging when cells proceed
through a biological process in an unsynchronized manner. A single time point may contain cells from different stages in the process, obscuring the dy-
namics of relevant genes. Reordering the cells in “pseudotime” according to biological progress eliminates averaging and recovers the true signal in ex-
pression (Trapnell et al. 2014).
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Single-cell approaches shed light on tumor heterogeneity

Lawson, D. (2021) Science
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Figure 7. Cellular Transitions in Glioblastoma
(A) Experimental workflow. Different fractions of cells were sorted from patient sample MGH143 and injected orthotopically into immunocompromised mice to

generate PDXs. The patient sample and the PDX subpopulations were subjected to scRNA-seq.

(B) Samples described in (A) are each represented by a pie chart depicting the fraction of cells in four states. Pie charts are positioned on the x axis on the basis of

their sorted fraction and whether they represent injected or PDX sample, and on the y axis on the basis of their compositional similarity to the original patient

sample (one minus the Manhattan distance over the fractions of four states).

(C) Experimental workflow. Lentiviruses harboring oncogenes and unique barcodeswere injected into themouse hippocampus (STARMethods) and the resulting

tumors were analyzed by scRNA-seq.

(D) Barcodeswhichwere identified inmultiple cells are each represented by a pie chart depicting the fraction of cells in each state. Pie charts are positioned on the

basis of the number of cells with the respective barcode (x axis), and the number of cellular states observed among these cells (y axis). Pie chart sizes are

proportional to log2 of the number of cells.

(legend continued on next page)

846 Cell 178, 835–849, August 8, 2019

Neftel, C. et. al. (2019) Cell
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therapies. For example, the deployment of apoptosis-inducing
drugs may induce cancer cells to hyperactivate mitogenic
signaling, enabling them to compensate for the initial attrition
triggered by such treatments. Such considerations suggest
that drug development and the design of treatment protocols
will benefit from incorporating the concepts of functionally
discrete hallmark capabilities and of the multiple biochemical
pathways involved in supporting each of them. Thus, in partic-
ular, we can envisage that selective cotargeting of multiple
core and emerging hallmark capabilities and enabling character-
istics (Figure 6) in mechanism-guided combinations will result in
more effective and durable therapies for human cancer.

CONCLUSION AND FUTURE VISION

We have sought here to revisit, refine, and extend the concept of
cancer hallmarks, which has provided a useful conceptual
framework for understanding the complex biology of cancer.

The six acquired capabilities—the hallmarks of cancer—have
stood the test of time as being integral components of most
forms of cancer. Further refinement of these organizing princi-
ples will surely come in the foreseeable future, continuing the
remarkable conceptual progress of the last decade.
Looking ahead, we envision significant advances during the

coming decade in our understanding of invasion andmetastasis.
Similarly, the role of aerobic glycolysis in malignant growth will
be elucidated, including a resolution of whether this metabolic
reprogramming is a discrete capability separable from the core
hallmark of chronically sustained proliferation. We remain
perplexed as to whether immune surveillance is a barrier that
virtually all tumors must circumvent, or only an idiosyncrasy of
an especially immunogenic subset of them; this issue too will
be resolved in one way or another.
Yet other areas are currently in rapid flux. In recent years, elab-

orate molecular mechanisms controlling transcription through
chromatin modifications have been uncovered, and there are

Figure 6. Therapeutic Targeting of the Hallmarks of Cancer
Drugs that interfere with each of the acquired capabilities necessary for tumor growth and progression have been developed and are in clinical trials or in some
cases approved for clinical use in treating certain forms of human cancer. Additionally, the investigational drugs are being developed to target each of the
enabling characteristics and emerging hallmarks depicted in Figure 3, which also hold promise as cancer therapeutics. The drugs listed are but illustrative
examples; there is a deep pipeline of candidate drugs with different molecular targets and modes of action in development for most of these hallmarks.
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farther along an aligned HDAC trajectory at
72 hours (fig. S26). This suggests that the
dose of many HDAC inhibitors governs the
magnitude of a cell’s response rather than its
rate of progression and that any observed
heterogeneity cannot be attributed solely to
asynchrony (fig. S26).
Next, we assessed whether a given HDAC

inhibitor’s target affinity explained its global
transcriptional response to the compound.
We used dose-response models to estimate
each compound’s transcriptionalmedian effec-
tive concentration (TC50), i.e., the concentra-
tion needed to drive a cell halfway across the
HDAC inhibitor pseudodose trajectory (fig.
S27A and table S6). To compare the transcrip-
tionally derivedmeasures of potency with the
biochemical properties of each compound, we
collected publishedmedian inhibitory concen-
tration (IC50) values for each compound from
in vitro assays performed on eight purified
HDAC isoforms (table S7). With the excep-
tion of two relatively insoluble compounds,

our calculated TC50 values increased as a func-
tion of compound IC50 values (Fig. 4C and
fig. S27, B and C).
To assess the components of the HDAC

inhibitor trajectory, we performed differen-
tial expression analysis using pseudodose as a
continuous covariate. Of the 4308 genes that
were significantly differentially expressed
over this consensus trajectory, 2081 (48%) re-
sponded in a cell-type–dependentmanner and
942 (22%) exhibited the same pattern in all
three cell lines (fig. S28, A and B, and table S8).
One prominent pattern shared by the three
cell lines was an enrichment for genes and
pathways indicative of progression toward
cell-cycle arrest (figs. S28C and S29, A and B).
DNA content staining and flow cytometry
confirmed that HDAC inhibition resulted in
the accumulation of cells in the G2/M phase
of the cell cycle (34) (fig. S29, C and D).
The shared response to HDAC inhibition

included not only cell-cycle arrest but also the
altered expression of genes involved in cellular

metabolism (fig. S28C). Histone acetyltrans-
ferases and deacetylases regulate chromatin
accessibility and transcription factor activity
through the addition or removal of charged
acetyl groups (35–37). Acetate, the product
of HDAC class I-, II-, and IV-mediated his-
tone deacetylation and a precursor to acetyl-
coenzymeA (acetyl-CoA), is required for histone
acetylation but also has important roles in
metabolic homeostasis (23, 38, 39). Inhibi-
tion of nuclear deacetylation limits recycling
of chromatin-bound acetyl groups for both
catabolic and anabolic processes (39). Accord-
ingly, we observed that HDAC inhibition led
to sequestration of acetate in the form of
markedly increased acetylated lysine levels af-
ter exposure to a 10 mM dose of the HDAC in-
hibitors pracinostat and abexinostat (fig. S30).
Upon further inspection of pseudodose-

dependent genes, we observed that enzymes
critical for cytoplasmic acetyl-CoA synthesis
from either citrate (ACLY) or acetate (ACSS2)
were up-regulated (Fig. 5A). Genes involved in
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Fig. 4. HDAC inhibitor trajectory captures cellular heterogeneity in drug response and biochemical affinity. (A) MNN alignment and UMAP embedding of
transcriptional profiles of cells treated with one of 17 HDAC inhibitors. Pseudodose root is displayed as a red dot. (B) Ridge plots displaying the distribution of cells along
pseudodose by dose shown for three HDAC inhibitors with varying biochemical affinities. (C) Relationship between TC50 and average log10(IC50) from in vitro
measurements. Asterisks indicate compounds with a solubility <200 mM (in DMSO) that were not included in the fit.

Fig. 5. HDAC inhibitors shared transcriptional response indicative of acetyl-CoA deprivation. (A) Heatmap of row-centered and z-scaled gene expression depicting
the up-regulation of pseudodose-dependent genes involved in cellular carbon metabolism. (B) Diagram of the roles of genes from (A) in cytoplasmic acetyl-CoA
regulation. Red circles indicate acetyl groups. Enzymes are shown in gray. Transporters are shown in green (FA, fatty acid; Ac-CoA, acetyl-CoA; C, citrate).
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✦ Developed sci-Plex, an inexpensive sample multiplexing strategy 
compatible with single-cell RNA-seq  
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✦ Identified heterogeneity in drug response of different cell types 

✦ Single-cell resolution revealed heterogeneity in response to 
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The current standard of care in GBM only marginally 
improves patient survival

✦ Most common and aggressive primary brain cancer 
✦ Median survival of 12- 15 months

Stupp, R. et al. (2005). NEJM.



Receptor tyrosine kinases as an opportunity for the 
design of potent targeted therapies in glioblastoma  

Adapted from: Brennan, C.W. et al. (2013), Cell. 
Cancer Genome Atlas network. (2008), Nature.
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EGFR & AC-like GBM: Neftel, C. et al. (2019), Cell.

neurodevelopmental cell types, and therefore when they occur in
tumors, they might not only drive tumor progression but also
shape the distribution of cellular states within the tumor.

Demonstration of Cellular Plasticity by Combined
scRNA-Seq and Cellular Barcoding
Whereas defined genetic events appear to drive the identity of
the most common cellular states, we speculated that genetics

might incompletely skew toward specific cellular states, such
that a diversity of states is maintained through cellular plasticity.
To experimentally test the capacity of cells to transition between
states, we sought to isolate cells in a specific state, use them to
initiate tumors in a patient-derived xenograft (PDX) model, and
determine the state distribution in the resulting tumor.
First, to isolate cells of a specific state, we searched for cell-

surface markers from the meta-module genes and identified

A

B C D

E F

Figure 6. Glioblastoma Oncogenes Drive Defined Cellular States
(A) Micrographs of immunofluorescence of mouse NPCs overexpressing EGFR, CDK4, or eGFP immunostained for the astrocytic marker GFAP (red).

(B) Quantification of GFAP+ cells shown in (A) (STAR Methods).

(C) scRNA-seq scores for the AC-like signature (y axis) of ranked cells (x axis) overexpressing EGFR (red) or GFP (black) (STAR Methods).

(D) scRNA-seq scores for the NPC-like signature (y axis) of ranked cells (x axis) overexpressing CDK4 (blue) or GFP (black).

(E) Growth curve using NPCs overexpressing eGFP, EGFR, or CDK4 shows increased proliferation (p < 0.0001) in CDK4-expressing cells. Abbreviation is as

follows: RLU, Relative Light Units (arbitrary value).

(F) Growth curve of astrocytes derived from the engineered NPCs (STAR Methods) shows significant (p < 0.002, ANOVA) increase in growth of astrocytes

overexpressing EGFR.
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EGFR defines a molecular subtype of IDHwt GBM



Activity of osimertinib in glioblastoma Case Report

Baseline 1 month post-osimertinib 2 months post-osimertinib

Figure 1. MRI images detailing pre- and post-treatment with osimertinib. (A) The patient started with multifocal
disease prior to initiation of osimertinib, including a right parietal tumor (yellow) with satellite lesions, as well as a
parasagittal tumor in the anterior left frontal lobe (red). (B) After 1 month of osimertinib therapy, there was a near
complete response in the frontal lobe lesion and continued progression in the parietal lobe lesion. (C) The patient
underwent resection of the progressive parietal lobe lesion and had sustained response in the frontal lobe lesion.

Table 1. Summary of tumor analyses.
Tumor specimen Molecular profiling Results Treatment given Response

1. Initial resection – 3.2 cm left
temporal lobe mass

Targeted NGS panel EGFR copy number gain
EGFR C628F

Proton radiation (60 Gy) with
concurrent temozolomide
75 mg/m2/day

Disease progression in original
tumor site

2. Repeat craniotomy for
resection of recurrent left
temporal lobe mass

Targeted NGS panel EGFR C628F
EGFR A289V

Re-resection alone, followed by
bevacizumab 10 mg/kg IV
every 2 weeks. Continued
multifocal disease progression
after 4 weeks of bevacizumab
Osimertinib 80 mg daily was
started.

Complete response of left frontal
lobe tumor after 4 weeks of
osimertinib, but continued
progression of right parietal
tumor

3. Third craniotomy for
resection of contralateral right
parietal tumor

Targeted NGS panel
Droplet digital PCR for EGFRvIII

EGFR copy number gain
EGFRvIII

No further treatment. Patient
expired 2 months following
craniotomy

N/A

NGS: Next generational sequencing using 153-gene panel (Comprehensive Solid Tumor HaloPlex, version 2.0, Illumina HiSeq2500, Agilent Technology, Inc); PCR: Polymerase chain reaction.

osimertinib in human GBM. Targeted NGS performed on our patient’s original tumor revealed two EGFR point
mutations (C628F and A289V), prompting a trial of osimertinib at the time of multifocal disease relapse given its
activity against EGFR mutations in NSCLC and significant blood–brain barrier penetration. Although there is no
preclinical or clinical data suggesting sensitivity of these mutations to TKI therapy, our patient remarkably had a
near complete response to osimertinib in one of her tumors, a lesion that had developed after her prior surgeries
and therefore could not be sequenced for molecular analysis. Pseudo progression was considered as an alternative
explanation for this response following progressive disease but was dismissed as the progression was outside the
prior radiation field. A separate tumor continued to progress on osimertinib. This tumor was resected and found
to be negative for EGFR point mutations, but positive for EGFRvIII.

Despite the relative abundance of activating EGFR mutations in GBM, attempts to target these mutations
therapeutically in GBM have been disappointing [12]. One problem has been inadequate brain penetration of
prior EGFR inhibitors. Osimertinib, on the other hand, has demonstrated significant central nervous system
activity in NSCLC. This has included EGFR-mutant brain metastases [17,20], as well as refractory EGFR-mutant
leptomeningeal disease [21,22]. Another issue hampering efficacy of EGFR TKIs in GBM has been a lack of
specificity of available EGFR TKIs for the EGFR mutations typically detected in GBM [8]. These mutations
involve the extracellular domain of EGFR, whereas EGFR mutations in NSCLC are found in the tyrosine kinase
domain [23]. However, a recent study demonstrated significant preclinical activity of osimertinib in GBM harboring

future science group www.futuremedicine.com

Clinical response to a brain penetrant EGFR inhibitor

Makhlin, I. et. al. (2019) CNS Oncology.
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Mapping the molecular response to EGFR inhibitors

CMAP: Subramanian, A., Narayan, R., Corsello, S.M. et al. (2017) Cell.
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Maximizing GBM sensitivity to inhibition
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An in-depth description of MrVI and its post-training analysis proce-
dures is provided in the Methods.

Retrieving known sample effects on a semi-synthetic dataset
We used a semi-synthetic dataset to evaluate how accurately MrVI cap-
tures differences between samples (through exploratory and compara-
tive analysis) when different cell subsets are influenced by different 
sample-level effects. Taking a published dataset of 68,000 peripheral 
blood mononuclear cells (PBMCs)29 profiled with 10x, consisting of 
3,000 highly variable genes and five main cell clusters, which we refer 
to as subsets A–E. We assigned each cell in this dataset to 1 of 32 syn-
thetic study subjects. These study subjects are characterized by two 
distinct sample-level covariates. Our strategy for assigning cells to the 
simulated subjects varied between the cell subsets to simulate differ-
ent covariate effects. For subset A, the assignment of cells resulted in 
DE across categories of covariate 1, reflecting a hierarchical grouping 
of the samples. For subsets B and C, our cell assignment reflected DA 
across categories of covariate 2 (Fig. 2a). Cells in the remaining subsets 

were randomly assigned to samples and hence did not contain any DE 
or DA effects (Methods).

We applied MrVI using the simulated subject identifiers as the mod-
eled target covariate (sn) and leaving the nuisance covariate (bn) empty. 
The resulting u space clearly reflected the differences between the cell 
subsets (Fig. 2b). In the z space, we observed distinct subject-specific 
effects in cells of subset A, whereas cells in the remaining clusters were 
mixed, aligning with the expectations that subset A alone contained 
DE effects. For exploratory analysis, we used the mapping from u to z 
to estimate sample distances for each cell (Fig. 2c). In cell subset A, the 
sample distance matrix (averaged over cells) produced a hierarchical 
structure similar to the simulated (ground truth) dendrogram. As 
expected, MrVI estimated much smaller distances between samples 
when considering the other cell subsets, with no discernible structure. 
We compared this result with the standard approach for stratifying 
subjects using clustering obtained either from PCA or scVI (Methods). 
The resulting compositional analyses were less effective in captur-
ing sample stratification in subset A (Supplementary Fig. 1a,c) and 

Sample ID

Sample-aware cell
representation

Sample-unaware cell representation

Nuisance factors
(such as batch)

Gene counts
(sample- and batch-aware)

Generative 
model
Variational 
approximationu

u u u

u

p(z|u, s’)

qs (u)

p(z|u, s’)

z

u

s

z

b

x

N

β

z
z

Fig. 1 | Overview of MrVI. a, We consider multi-batch, multi-sample experimental 
designs. In the canonical case, we gather single-cell measurements from several 
samples, which are collected across several batches. In this case, the relevant 
nuisance covariate is the batch. b, Left, MrVI model illustration. Right, graphical 
model plate diagram. MrVI relies on two cell representations, u and z. A sample-
unaware cell representation (u) captures shared type information (colored by 
cell type in the diagram). From this quantity and the sample-of-origin of the cell, 
we construct a sample-aware representation (z) of the cell. Last, we model gene 
expression as a function of this latent variable and of observed nuisance factors. 
Each point in the diagram corresponds to an individual cell. c,d, Use cases of 
MrVI for exploratory and comparative analyses. c, For exploratory analysis, 

MrVI computes local sample stratifications. MrVI can compute counterfactual 
representations, characterizing what would have been the representation of 
a cell had it originated from a different sample. By computing the distances 
between counterfactual representations of all samples, MrVI can identify 
sample-level effects on cell states. d, For comparative analysis, MrVI quantifies 
differences in abundance across cell states (top right), and identifies sample 
metadata effects on gene expressions (bottom). Both the sample stratification 
and differential expression procedures use counterfactual z representations to 
compare local sample effects. The differential abundance procedure involves an 
approximation of the posterior density for each sample in the u latent space.
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The resulting compositional analyses were less effective in captur-
ing sample stratification in subset A (Supplementary Fig. 1a,c) and 
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Fig. 1 | Overview of MrVI. a, We consider multi-batch, multi-sample experimental 
designs. In the canonical case, we gather single-cell measurements from several 
samples, which are collected across several batches. In this case, the relevant 
nuisance covariate is the batch. b, Left, MrVI model illustration. Right, graphical 
model plate diagram. MrVI relies on two cell representations, u and z. A sample-
unaware cell representation (u) captures shared type information (colored by 
cell type in the diagram). From this quantity and the sample-of-origin of the cell, 
we construct a sample-aware representation (z) of the cell. Last, we model gene 
expression as a function of this latent variable and of observed nuisance factors. 
Each point in the diagram corresponds to an individual cell. c,d, Use cases of 
MrVI for exploratory and comparative analyses. c, For exploratory analysis, 

MrVI computes local sample stratifications. MrVI can compute counterfactual 
representations, characterizing what would have been the representation of 
a cell had it originated from a different sample. By computing the distances 
between counterfactual representations of all samples, MrVI can identify 
sample-level effects on cell states. d, For comparative analysis, MrVI quantifies 
differences in abundance across cell states (top right), and identifies sample 
metadata effects on gene expressions (bottom). Both the sample stratification 
and differential expression procedures use counterfactual z representations to 
compare local sample effects. The differential abundance procedure involves an 
approximation of the posterior density for each sample in the u latent space.

Multi-resolution variational inference (MrVI)

MrVI: *Boyeau, P., *Hong, J. et al. (2025). Nature Methods.



Defining EGFRi programs with MrVI

Identify drug-dose combinations 
with similar effects (per PDCL)

Identify broader response  
Modules (across PDCLs)

Collapse EGFRis by their 
induction of response modules 
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Grouping EGFRi’s by their ability to modulate distinct 
molecular responses



ACC: Adrenocortical carcinoma
BLCA: Bladder Urothelial Carcinoma
BRCA: Breast invasive carcinoma
CESC: Cervical squamous cell carcinoma and endocervical adenocarcinoma
CHOL: Cholangiocarcinoma
COAD: Colon adenocarcinoma
DLBC: Lymphoid Neoplasm Diffuse Large B-cell Lymphoma
ESCA: Esophageal carcinoma
GBM: Glioblastoma multiforme
HNSC: Head and Neck squamous cell carcinoma
KICH: Kidney Chromophobe
KIRC: Kidney renal clear cell carcinoma
KIRP: Kidney renal papillary cell carcinoma
LGG: Brain Lower Grade Glioma
LIHC: Liver hepatocellular carcinoma
LUAD: Lung adenocarcinoma
LUSC: Lung squamous cell carcinoma
MESO: Mesothelioma
OV: Ovarian serous cystadenocarcinoma
PAAD: Pancreatic adenocarcinoma
PCPG: heochromocytoma and Paraganglioma
PRAD: Prostate adenocarcinoma
READ: Rectum adenocarcinoma
SARC: Sarcoma
SKCM: Skin Cutaneous Melanoma
STAD: Stomach adenocarcinoma
TGCT: Testicular Germ Cell Tumors
THCA: Thyroid carcinoma
THYM: Thymoma
UCEC: Uterine Corpus Endometrial Carcinoma
UCS: Uterine Carcinosarcoma
UVM: Uveal Melanoma
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Figure 3. Tumor immunogenicity score (TIGS) analysis in 32 cancer types. (A) Analysis of TIGS in 32 cancer types. (B) Results of Cox proportional

hazards regression analysis using TIGS for all solid cancers. Forest plots showing loge hazard ratio (95% confidence interval). Cox p-values are adjusted

with the FDR method. p-values less than 0.1 are in bold. The pooled hazard ratios and the p-values were generated using the random effect model.

The statistical test for heterogeneity is also shown in the last column. Tumor types are ordered by median TIGS score.

DOI: https://doi.org/10.7554/eLife.49020.012

Figure 3 continued on next page
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Figure 2. Gene expression signatures associated with high APM score. (A) Gene sets enriched in patients with

high APM score. (B) Significant correlation between APM score and IIS in 8949 cancer samples. (C) Significant
correlation between APM score and IIS in different cancer types. (D) Correlation between TMB and IIS in 8413

cancer samples. (E) Correlation between TMB and IIS in different cancer types.

Figure 2 continued on next page
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Association between RTK signaling and response to PD-1: Zhao et al. Nat Medicine 2019.



TDC4 is associated with increased APM expression

TDCs & APM MHC class 1 expression



TDC4 is associated with increased APM expression



ns *
ns *

GBM:T-cell 
ratio

Tyrphostin-9 promotes T-cell mediated tumor cell killing



Vignette 2 summary

✦ Profiled EGFRi-induced transcription in patient-derived and natively-
heterogenous GBM models. 

✦ Identified heterogeneity in the induction of molecular programs upon 
EGFR inhibition. 

✦ A subset of tyrphostin family EGFR inhibitors modulates the 
expression of APM and sensitizes GBM to T-cell mediated killing.



Multiplex single-cell chemical genomics reveals 
the kinase dependence of the response to 

targeted therapy 
Cell Genomics 2024



#McFaline-Figueroa, J.L. et. al. #Trapnell, C. (2024), Cell Genomics.
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sci-Plex-GxE: A workflow for combined single-cell 
genetic and exposure screens

Highly multiplex sci-RNA-seq

Perturb-seq: 
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Contribution of the human protein kinome to therapy 
induced transcription 

1,000,050 single-cell transcriptomes
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Transcriptome remodeling after kinase inhibition



Conservation of a putative adaptive resistance program
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Kinase regulation of conserved drug-induced programs

Gene effect Gene x Environment effect

Created with Coral: http://phanstiel-lab.med.unc.edu/CORAL/ 



Effect of combinatorial kinase inhibition on the expression 
of the adaptive program
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Molecular regulation of putative adaptive program
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Vignette 3 summary

✦ Introduced sci-Plex and sci-Plex-GxE, perturbation multiplexing 
strategies compatible with single-cell RNA-seq  

✦ Performed high-throughput chemical genomic screens for the 
regulation of drug-induced transcription 

✦ Multiplexed methods revealed kinases involved in regulating the 
response to RTK inhibition  

✦ Prioritized combinatorial treatments towards fates of interest



Thank you!


