Cancer Evolution
and
Multistep Tumorigenesis

Cancer Biology | (PATH4500)
September 24, 2025

Katia Basso
(kb451@cumc.columbia.edu)



Cancer Evolution and Multistep Tumorigenesis
-KEY LEARNING OBJECTIVES-

» To describe the multi-step process of tumorigenesis.

» To recognize the contribution of cancer cell intrinsic mechanisms (genetic and epigenetic) and
the influence of non-tumor mechanisms (e.g., tumor microenvironment, immune response).

» To examine the hallmarks of cancer.

» To identify different models of cancer evolution.



Most human cancers develop over many decades of time

Age is a large factor in incidence of cancer
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(Courtesy of W.K. Hong, compiled from SEER Cancer Statistics Review.)
Copyright © 2023 W. W. Norton & Co., Inc.

Such dynamics imply a sequence of random independent events that occur at comparable frequencies over extended periods
of time. The probability of these events to occur per unit of time may vary dramatically from one individual to another, being
affected by inherited predisposition, diet, and lifestyle, among other variables.



Cancer incidence and duration of carcinogen exposure
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Malignant transformation correlates with the duration of the exposure rather than the age of the exposed individuals or

the age when the exposure began.

Peto, Nature, 2001



Multiple components influence cancer evolution

Exposures/lifestyle (aetiology)

Systemic regulators

« Hormones, growth factors
* Immune/inflammatory response
cells and cytokines

Local regulators

» Oxygen/metabolism/nutrients
+ Cell-cell and cell-stroma/matrix
» Space

Architectural constraints

» Physical compartments
+ Basement membranes
» Restricted niches

Constitutive genetics Greaves & Maley, Nature, 2012



Cancer development is a multi-step process
-from adenoma to colon cancer-

Stage 0 (Carcinoma in Situ):

This is the earliest stage of cancer. Abnormal cells
are present only in the innermost lining (mucosa)
and have not spread.

Stage I

The tumor has grown into the layer of tissue just
below the inner lining (submucosa) or into the thick
muscle layer (muscularis propria), but it has not
spread to lymph nodes or distant organs.

Stage Il

The tumor has grown through the colon wall and
possibly into nearby tissues or organs, but it has
not spread to lymph nodes or distant sites.

Stage lil:
The cancer has spread to one or more nearby
lymph nodes, but there is no distant metastasis.

Stage IV:
The cancer has spread to distant organs, such as
the liver or lungs.

Spread to other organs

Image credit: Terese Winslow, The National Cancer Institute (2005)



Cancer development is a multi-step process
-evidence for adenoma to carcinoma progression-
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Occasionally, carcinomas are observed to be
growing directly out of adenomas.
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Polypectomy (surgical removal of polyps)
reduces the risk of colorectal cancer.



Cells accumulate genetic and epigenetic alterations as tumor
progression proceeds

A genetic model for colorectal tumorigenesis
adapted from Fearon & Vogelstein, Cell 1990

Other
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Menter et al., Current Gastroenterology Reports (2019) Epithelium



Hundreds of non-silent mutations are detected in cancer cells

#heterogeneous

nonsilent muts
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Hallmarks of Cancer
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PRSI SIChRIN growth suppressors Hanahan & Weinberg, Cell 2000
\
Unlocking Nonmutational - N
phenotypic plasticity epigenetic reprogramming Hallmarks of cancer: next generation
Hanahan & Weinberg, Cell 2011
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Cancer Evolution



The Clonal Evolution of
Tumor Cell Populations

Acquired genetic lability permits stepwise selection
of variant sublines and underlies tumor progression.

Peter C. Nowell
Science 1976

Model of clonal evolution in neoplasia
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Cancer development follows the rules of Darwinian evolution

Random mutations create genetic and phenotypic variability in a cell population, and
the forces of selection may favor the outgrowth of cells with increased fitness.

initiating mutation
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Functional and non-functional intra-tumor heterogeneity in tumor
evolution

Non- Functional Subclone
functional driver event outcompetes
passenger under neighbours
event not positive and begins

under selection clonal sweep

selection

Non-
functional
event evolves
neutrally

Time

The increased rate of phenotypic variation in cancers compared with normal tissues means that new subclones arise and
compete. A minority contain a driver event, such as a genetic mutation or copy number alteration, that grants a selective
advantage. These subclones may grow at a faster rate than their neighbors and outcompete them in a ‘selective sweep’.

Black & McGranahan, Nature Reviews Cancer, 2021



Clonal diversification within a tumor

initiating mutation
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Fraction of population

Linear clonal succession

Fraction of population

Dynamic clonal diversification

Marusyk and Polyak, Biochim. Biophys. Acta, 2010



Inferring tumor evolution and phylogenetic structure from genetic data
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Inferring Variant Allelic Frequencies (VAFs) of somatic mutations
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Clone size
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Inferring tumor evolution and phylogenetic structure from VAFs

Subclonal resolution improves
with higher sequencing depth
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Models of cancer evolution

Linear evolution Branched evolution
Successive drivers Coexistence of multiple subclones,
sweep to fixation each with different fitness

Neutral evolution

New mutations confer no
fitness advantage, and
lineage size is determined
by time of emergence

g

% Driver mutation (increased fitness)

Punctuated event

Very fit clone that quickly
sweeps to fixation

I Williams MJ, et al. 2019.
A ¥l Annu. Rev. Genom. Hum. Genet. 20:309-29



Examples of Cancer Evolution



Malignant transformation at different stages of B cell development
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The CLL-RS transition occurs through a linear model in most cases

Chronic Lymphocytic Leukemia Richter’s Syndrome Richter’s Syndrome
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FL transformation occurs through a branched model in most cases

linear evolution divergent evolution

Follicular Lymphoma ~ from FL dominant clone from common progenitor cell
( I ) B cell) B cell
)
|
|
|
\4

Transformed Follicular Lymphoma
(tFL)

n=2/12 (17%) n=10/12 (83%)

Pasqualucci et al., Cell Rep 2014



Clonal evolution and relapse in leukemia
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Clonal diversification and development of therapy resistance

Intrinsic Resistance
(mutation pre-existing
before therapy)

Acquired Resistance
(1atrogenic mutation)

Drug treatment Treatment cycles

Anupriya S et al., Mutation Research Review, 2022



Clonal evolution and development of therapy resistance in leukemia
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Inferring tumor evolution from genetic data
-challenges-

?



Tumor evolution inference beyond the genomic approach

Genetic alterations are instrumental toward malignant transformation.
However, the genetic lens is only one face of the prism of forces underpinning tumor evolution.

epigenome

Time

Proliferating tumour cell ‘ Subclonal epigenetic alteration )ﬁ—( T cgll with tumour
antigen-specific receptors
Q Subclonal point mutation ‘ Subclqnal POt mutEton ‘ 1
encoding neoantigen

Subclonal transcriptomic
alteration

Black & McGranahan, Nature Reviews Cancer, 2021



Toward tumor evolution inference using single-cell omics data
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Nam, Chaligne & Landau, Nature Reviews Genetics, 2020



Cancer Evolution and Multistep Tumorigenesis
-CONCLUSIONS-

* Tumorigenesis: a multi-step process relying on the acquisition of alterations (genetic and
epigenetic) which affect multiple distinct regulatory circuits within cells and systems and
function in a complementary fashion to create the neoplastic phenotype.

*» The neoplastic phenotype can be achieved trough multiple means and distinct alterations,
however several hallmarks are shared across tumors, including: 1) ability to proliferate
indefinitely; 2) reduced susceptibility to cell death; 3) acquisition of invasiveness and
metastatic ability; 4) promoting angiogenesis; 5) ability to evade the immune system.

¢ Multi-step tumor progression can be depicted as a form of Darwinian evolution occurring
within tissues. However, the contribution of epigenetic mechanisms and the rapid acquisition
of genetic changes require to modify the linear Darwinian evolution model to incorporate
complex branched evolution.
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